• Title/Summary/Keyword: CFD Technique

Search Result 422, Processing Time 0.025 seconds

Statistical Prediction of Wake Fields on Propeller Plane by Neural Network using Back-Propagation

  • Hwangbo, Seungmyun;Shin, Hyunjoon
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.3
    • /
    • pp.1-12
    • /
    • 2000
  • A number of numerical methods like Computational Fluid Dynamics(CFD) have been developed to predict the flow fields of a vessel but the present study is developed to infer the wake fields on propeller plane by Statistical Fluid Dynamics(SFD) approach which is emerging as a new technique over a wide range of industrial fields nowadays. Neural network is well known as one prospective representative of the SFD tool and is widely applied even in the engineering fields. Further to its stable and effective system structure, generalization of input training patterns into different classification or categorization in training can offer more systematic treatments of input part and more reliable result. Because neural network has an ability to learn the knowledge through the external information, it is not necessary to use logical programming and it can flexibly handle the incomplete information which is not easy to make a definition clear. Three dimensional stern hull forms and nominal wake values from a model test are structured as processing elements of input and output layer respectively and a neural network is trained by the back-propagation method. The inferred results show similar figures to the experimental wake distribution.

  • PDF

A Prediction of Hybrid Ventilation System Performance in Apartment House (제3종 하이브리드 환기시스템을 적용한 공동주택의 환기성능 예측)

  • Hwang Ji-Hyeon;Oh Chang-Yong;Kim Moo-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.541-548
    • /
    • 2006
  • A hybrid ventilation system was introduced to predict the ventilation performance of the apartments. This ventilation system was composed of the natural supply-air inlet and the forced exhaust-air outlet. Analysis was conducted by CFD technique and was performed on three ventilating flow rates; 30, 60, $120m^3/h$. As the results, residents feel comfortable thermally for $60m^3/h$. In the case of $120m^3/h$, however, residents feel uncomfortable both thermally and in air currents. In this study the energy saving for space heating is also an important factor. In the case of whole region with $180m^3/h$, residents feel comfortable at each region of the model apartment. It is shown that this hybrid ventilation system is possible method for the apartment house.

Twisted rudder for reducing fuel-oil consumption

  • Kim, Jung-Hun;Choi, Jung-Eun;Choi, Bong-Jun;Chung, Seok-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.715-722
    • /
    • 2014
  • Three twisted rudders fit for large container ships have been developed; 1) the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2) the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3) the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed.

A Numerical Study on Flow Analysis of a Valveless Bidirectional Piezoelectric Micropump (밸브 없는 양방향 피에조 마이크로펌프의 유동해석)

  • Lee, Sang-Hyuk;Hur, Janet;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.14-21
    • /
    • 2008
  • A numerical simulation on the flow field of a valveless bidirectional piezoelectric micropump has been performed. In this type of micropump, the oscillation of the piezoelectric diaphragm generates the blowing and suction flow through the oblique channel from the pumping chamber. The angle between the oblique and main channel causes the variation of flow distribution through upstream and downstream channels in suction and blowing modes. In the suction flow mode, the working fluid flows from both the upstream and downstream of the main channel to the pumping chamber through the oblique channel. However, in the blowing flow mode, the fluid pushed out of the pumping chamber flows more toward the downstream of the main channel due to the inertia of the fluid. In the present study, the effects of geometries such as the angle of oblique channel and the shape of main channel on the flow rate of the up/downstream were investigated. The flow rate obtained from the pump and the energy required to the pump were also analyzed for various displacements and frequencies of the oscillation of the diaphragm.

Effects of Thermal Contact Resistance on Film Growth Rate in a Horizontal MOCVD Reactor

  • Im Ik-Tae;Choi Nag Jung;Sugiyama Masakazu;Nakano Yoshiyaki;Shimogaki Yukihiro;Kim Byoung Ho;Kim Kwang-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1338-1346
    • /
    • 2005
  • Effects of thermal contact resistance between heater and susceptor, susceptor and graphite board in a MOCVD reactor on temperature distribution and film growth rate were analyzed. One-dimensional thermal resistance model considering thermal contact resistance and heat transfer area was made up at first to find the temperature drop at the surface of graphite board. This one-dimensional model predicted the temperature drop of 18K at the board surface. Temperature distribution of a reactor wall from the three-dimensional computational fluid dynamics analysis including the gap at the wafer position showed the temperature drop of 20K. Film growth rates of InP and GaAs were predicted using computational fluid dynamics technique with chemical reaction model. Temperature distribution from the three-dimensional heat transfer calculation was used as a thermal boundary condition to the film growth rate simulations. Temperature drop due to the thermal contact resistance affected to the GaAs film growth a little but not to the InP film growth.

Droplet Ejection and Experimental Study on the Application of Industrial Inkjet Printhead (산업용 잉크젯 프린트헤드 액적 토출현상의 실험적 해석)

  • Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • In this paper, a hybrid design tool combining one-dimensional(1D) lumped model and three-dimensional computational fluid dynamics(CFD) approach has been developed in order to evaluate the performance of inkjet print head and droplet control process are studied to reduce the deviations between nozzles which affect the size of the printed line for the industrial application of direct writing on printed circuit boards(PCB). 1D lumped model analysis shows that it is useful tool for evaluating performance of an inkjet head by varying the design parameters. The differences in ejected volume and droplet velocity between analytical and experimental result are within 12%. Time sequence of droplet generation is verified by the comparison between 3D analysis result and photographic images acquired by stroboscopic technique. In addition, by applying DPN process, velocity and volume uniformity between nozzles is dramatically improved that the tolerance achieved by the piezoelectric inkjet printhead across the 64 nozzles is 5 to 8%. A printed line pattern is successfully obtained using the fabricated inkjet print head and droplet calibration system.

  • PDF

Development of Riverbed Scour Protection Technique with Non-toxic materials and An examination of Field Application (무독성 소재활용 다층다공성 하상보호 기술개발 및 현장 적용성 검토)

  • Ahn, Hong Kyu;Ji, Min Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.479-479
    • /
    • 2016
  • 국내 하천에는 하천을 가로지르는 보나 낙차공과 같은 횡단구조물이 약 5만여개에 달하고 있다. 이러한 보/낙차공과 같은 하천횡단구조물에는 구조물을 월류하여 떨어지는 부분의 세굴을 막기 위하여 apron(물받이공)을 조성하도록 되어있고, 물받이공 하류부 세굴을 막기 위하여 사석을 깔거나, 돌망태를 설치하여 이 부분에서의 세굴을 막아 하상을 보호하도록 하고 있다. 그러나 사석이나 돌망태공, 블록을 이용한 보호공은 한 번 설치되면 이들 공법이 제자리에 남아 있는 한 세굴 방지에 좋은 효과를 발휘한다는 장점이 있지만 포설된 공법은 시간이 지남에 따라 혹은 홍수로 인해 이동되거나 소실되는 문제가 발생되며, 최종적으로 하천횡단구조물의 안전성에도 영향을 미치게 된다. 이와 더불어 강우량의 증대 및 집중호우 등 돌변하는 기후변화로 하천환경변화에 대한 적용 가능한 기술이 미비하다. 따라서 하천에 유해한 물질을 방출시키지 않고 하천환경 및 하천 생물의 생활사에 영향을 주지 않는 무 저독성 소재를 활용하여 치수적으로 수리적 안정성을 강화시키고, 생태적으로도 건강한 생태하천 복원 기술개발이 요구되는 실정이다. 본 연구에서는 무독성 소재를 활용하여 보 하류부에 자연친화적인 하상보호공으로 다층다공성 하상보호기술을 개발하였으며, 개발된 하상보호기술을 CFD 3차원 수치해석과 실내실험을 통하여 수리적 안전성을 검토하였다. 또한 개발된 기술은 김해시 대청천 하류 일부구간에 시범적으로 적용하였고, 시범사업 시공 전 중 후 각 단계에서 물리, 화학, 생물 모니터링을 통하여 개발기술의 현장 적용성을 검증하였다.

  • PDF

Development of an Optimal Hull Form with Minimum Resistance in Still Water

  • Choi Hee-Jong;Kim Mun-Chan;Chun Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.3
    • /
    • pp.1-13
    • /
    • 2005
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) to search for optimized hull form and CFD(Computational Fluid Dynamics) technique. The friction resistance is estimated using the ITTC 1957 model-ship correlation line formula and the wave making resistance is evaluated using a potential-flow panel method based on Rankine sources with nonlinear free surface boundary conditions. The geometry of hull surface is represented and modified using B-spline surface patches during the optimization process. Using the Series 60 hull ($C_B$ =0.60) as a base hull, the optimization procedure is applied to obtain an optimal hull that produces the minimum total resistance for the given constraints. To verify the validity of the result, the original model and the optimized model obtained by the optimization process have been built and tested in a towing tank. It is shown that the optimal hull obtained around $13\%$ reduction in the total resistance and around $40\%$ reduction in the residual resistance at a speed tested compared with that of the original one, demonstrating that the present optimization tool can be effectively used for efficient hull form designs.

Prediction of the ventilation performance in a kitchen with various locations of gas range and window (가스렌지와 창문위치에 따른 주방 배기성능 예측)

  • 김경환;이재헌;박명식;이대우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2000
  • This paper presents the predicted results by CFD technique of air flow and contaminant distribution in a full-scale kitchen opened to a living room, ventilated by a exhaust hood. To analyze the characteristics of the indoor environment, the concept of contaminant index was defined. In this study, the locations of the gas range and the window were chosen as the parameters to investigate the indoor environment. The values of the contaminant index for several layout of the gas range and the window were calculated and compared. When the gas range is installed along the wall with specified window location, its position in relation to the wall has unnoticed effect on contaminant infer. Once the location of the gas range is fixed, the indoor air quality may deteriorate by the proximity of the window to the gas range. This is due to the shorter distance that external fresh air must travel within the kitchen before it reaches the exhaust fan.

  • PDF

Analysis of Ink Transfer for R2R Printing Process with High Speed Operation and Complex Roll Patterns (고속 웹 이송속도 및 복잡한 롤 패턴 형상을 고려한 R2R공정에서의 잉크전달 특성 해석)

  • Kim, Kyung-Hun;Kim, So-Hee;Na, Yang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.55-60
    • /
    • 2010
  • Ink transfer process from the printing roll to the moving web was investigated using a CFD technique for the application in R2R printed electronics. In line with the requirement that the web handling speed needs to be increased further for the cost competitiveness, the effects of web moving velocity with relatively complex roll patterns were analyzed. To make the present analysis more realistic, the numerical geometry and the ink properties were selected to match those of the real printing production system. Our numerical results showed that both web handling speed and complex printing-roll patterns influenced the shape of the transferred ink. As the web moving speed approaches towards 30mpm, a significant distortion of the shape of the transferred ink occurred. In the range of pattern width smaller than 100 microns, a phase distortion was also found to occur in all the printing-roll patterns considered in the present work but the ratio of the phase distortion to the line width gets smaller as the width becomes smaller. Thus, the web handling speed and the shape of printing-roll pattern will be important elements for the better printing quality under 100 micron line width range.