• 제목/요약/키워드: CFD Analysis

검색결과 2,958건 처리시간 0.041초

증기제트 방출시 과냉각수조 내의 열혼합 현상 CFD 해석 (CFD Analysis for Thermal Mixing in a Subcooled Water during Steam Jet Discharge)

  • 강형석;송철화
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.513-514
    • /
    • 2006
  • A CFD analysis for a thermal mixing experiment during steam jet discharge was performed to develop the analysis methodology for the thermal mixing between steam and subcooled water and to find the optimized numerical method. In the CFD analysis, the steam condensation phenomena by a direct contact was modelled by the so-called condensation region model. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. However, the commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behaviour reasonably well when a sufficient number of mesh distribution and a proper numerical method are adopted

  • PDF

터보펌프 부분흡입형 터빈 공력설계

  • 이은석;김진한
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.35-44
    • /
    • 2004
  • 본 연구에서는 액체로켓에 쓰이는 터보펌프 부분흡입현 터빈의 1차원 공력계산 및 구조설계에 대해 고찰하였다. 터빈은 노즐, 로터, 후방유도익등으로 나누어 각각에 대해 공력 특성을 계산식으로부터 유도하였고 CFD 계산을 통해 그 타당성을 입증하였다. 속도삼각형과 같은 1차원 설계 변수들은 평균선 방정식을 이용하여 수행되었고 2-D, 3-D CFD 계산을 통해 보정되었다. 블레이드 익형은 CFD 최적화기법을 통해 결정되었다. 향후, 열응력계산, 구조응력계산을 통한 열적/구조적 거동에 대해 연구가 필요하다.

  • PDF

CFD를 사용한 복잡한 형상을 갖는 래버린스 실의 누설량 예측 (Prediction of Combination-Type-Staggered-Labyrinth Seal Leakage Using CFD)

  • 하태웅
    • Tribology and Lubricants
    • /
    • 제22권2호
    • /
    • pp.66-72
    • /
    • 2006
  • Leakage reduction through annular type labyrinth seals of steam turbine is necessary for enhancing their efficiency and the precise prediction method of seal leakage is needed. In this study, numerical analysis for leakage prediction of the combination-type-staggered-labyrinth seal has been carried out using FLUENT 6 which is commercial CFD (Computational Fluid Dynamics) code based on FVM (Finite Volume Method) and SIMPLE algorism. The present CFD results are verified with the theoretical analysis based on Bulk-flow concept which has been mainly used in predicting seal leakage. Comparing with the result of Bulk-flow model analysis, the leakage result of CFD analysis shows good agreement within 7.1% error.

A Study on CFD Analysis Methods using Francis-99 Workshop Model

  • Le, Vu;Chen, Zhenmu;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제19권5호
    • /
    • pp.20-27
    • /
    • 2016
  • The Francis-99 is a workshop initiated by the Norwegian University of Science and Technology (NTNU), Norway, and Lulea University of Technology (LTU), Sweden, in order to further validate the capabilities of the CFD technologies. The goal of the first workshop is to determine the state of the art of numerical predictions for steady operating conditions. When performing the CFD analysis, some geometry details are often neglected. In case of Francis Turbine, labyrinth seals are usually not include in the simulation domain, this may lead to inaccurate prediction of turbine efficiency. In this study, the CFD analysis for Francis-99 Workshop model has been performed for full domain of machine including top and bottom labyrinth seals. The efficiency value and distribution of velocity and pressure have been investigated and compared to the experimental data obtained from NTNU. By comparing the results, it was found that: With the top and bottom labyrinth seals in the domain, the CFD result was significantly improved in prediction of efficiency at all the operating point, especially at part load.

연소로 내 2차 공기 분사에 따른 CFD 난류 모델 비교에 관한 연구 (The research on CFD turbulance models for comparison according to my secondary air injection into the combustion)

  • 최준혁;최종균;황승식;신동훈;정태용
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.345-347
    • /
    • 2012
  • The secondary air injection influences the flow of the combustion gas in the furnace. Therefore, the analysis of the furnace should be careful in the selection of the turbulent model with CFD. In this study, CFD results of several turbulent models were compared with experimental results. Analysis results suggest to select turbulent models in the furnace secondary air nozzle.

  • PDF

이젝터 구동관로의 직경비와 끝단의 위치 변화에 따른 유동특성 (Flow Characteristics of Ejector Driven Pipe According to the Changes of Diameter Ratio and End Position)

  • 김노형
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.45-51
    • /
    • 2016
  • This study conducted CFD analysis on the mean velocity vector of distribution of the ejector driven pipe while changing the inlet velocity to 1 m/s at the diameter ratio of diffuser of 1:3, 1:2.25, 1:1.8 with the end position of driven pipe at 1, 1.253, 1.333, 1.467 respectively, which used $k-{\varepsilon}$/High Reynolds Number for the turbulence model, SIMPLE method for the analysis algorithm, and PIV experiment to verify the CFD analysis. As a result of the CFD analysis the optimum diameter ratio of ejector driven pipe was 1:3, the optimum end position of driven pipe was 1.333 for the diameter ratio of 1:3, 1:2.25, 1:1.8 and the PIV experiment obtained the same result as the CFD analysis. Therefore, the numerical analysis of the flow characteristics of ejector can be used for the optimum design implementation on ejector system.

유니베이커 오븐의 유동해석 (CFD Analysis of Unibaker Oven)

  • 이종선;백두성
    • 한국산학기술학회논문지
    • /
    • 제5권5호
    • /
    • pp.371-376
    • /
    • 2004
  • 본 논문은 열평형 기술을 활용하여 다단계 조절이 가능한 유니베이커 오븐에 대하여 CFD(computational fluid dynamics) 해석을 수행하여 오븐내부의 열유동분포와 속도를 파악함으로서 오븐 내부의 열평형을 이룰 수 있는 최적 위치를 예상함으로서 유니베이커 오븐의 설계 자료로 이용하고자 한다.

  • PDF

CFD를 사용한 고성능 펌프 실의 동특성 계수 예측 (Prediction of Rotordynamic Coefficients for High-Performance-Pump Seal Using CFD Analysis)

  • 최복성;하태웅
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.37-43
    • /
    • 2010
  • Precise prediction of rotordynamic coefficients for annular type seal of turbomachinery is necessary for enhancing their vibrational stability and various prediction methods have been developed. As the seal passage is designed complicatedly, the analysis based on Bulk-flow concept which has been mainly used in predicting seal dynamics is limited. In order to improve the seal rotordynamic prediction, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved. In this study, 3D CFD(Computational Fluid Dynamics) analysis has been performed for predicting rotordynamic coefficients of non-contact type annular plain seal using FLUENT. Comparing with the results of Bulk-flow model analysis, the result of 3D CFD analysis shows good agreement.

모터의 특성을 고려한 CFD 해석에 의한 축류홴 성능해석 (ANALYSIS ON CHARACTERISTICS OF AN AXIAL FLOW FAN THROUGH CFD ANALYSIS INCORPORATED WITH MOTOR CHARACTERISTICS)

  • 김주한;허남건;김욱
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.109-114
    • /
    • 2010
  • In a fan design, CFD analysis, which is very useful for mechanical design relating to the heat and fluid dynamics, is one of the most popular tools. However, since the CFD analysis is conventionally carried out with the constant fan speed condition, the speed change, induced by the air flow rate and motor characteristics, is hardly modeled. And, consequently, the remarkable difference exist between analysis and experimental results. In this paper, we has proposed a method of setting the varying fan speed as a boundary condition considering air flow rate and motor torque-speed characteristics. The effectiveness of the proposed method is verified by comparison with experimental results.

철도시스템 전산유체해석 표준 프레임웍을 이용한 KTX 차량 주변 압력장에 대한 수치해석 (A Numerical Analysis on the Pressure Field Around KTX Train Using the Standard Framework of CFD Analysis for Railway System)

  • 남성원;차창환;권혁빈
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.511-516
    • /
    • 2006
  • A standard framework of CFD(Computational Fluid dynamics) analysis for railway system has been developed to evaluate the overall aerodynamic performance of railway system and has been adopted to numerical simulation of the pressure field around KTX train. The framework is composed of standard aerodynamic model and standard aerodynamic performance to customize the general CFD solution process reflecting the characteristics of railway system such as various operation mode and performance factors. The results show that the standard framework of CFD analysis for railway system can provide objectivity and consistency to the CFD analysis for railway system and the pressure field around KTX train has been successively solved.