• Title/Summary/Keyword: CFD 모사

Search Result 216, Processing Time 0.023 seconds

Simulations of Axisymmetric Transition Flow Regimes Using a CFD/DSMC Hybrid Method (CFD/DSMC 혼합해석기법을 이용한 축대칭 천이영역 유동 해석)

  • Choi, Young-Jae;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.169-176
    • /
    • 2019
  • In the present study, a CFD/DSMC hybrid method performed by a coupled analysis between the CFD method and the DSMC method was developed to obtain the flow information on the rarefied gas flows effectively. Flow simulations around the high speed vehicles on the transition flow regimes were conducted by using the developed method. The FRESH-FX vehicle made of cone and cylinder shapes was considered for the simulations. The results of the hybrid method were compared with the results of the pure CFD and the pure DSMC method to confirm the reliability and efficiency of the hybrid method. It was found that the gradient and the intensity of the shock waves were weakened due to the relatively low density on the transition flow regime. It was confirmed that the results of the hybrid analysis were different to those of the pure CFD analysis and almost identical to those of the pure DSMC analysis. In addition, the computational time of the hybrid method was reduced than that of the pure DSMC method. As a result, it was obtained that the validity and the efficiency of the CFD/DSMC hybrid method.

Evaluation of Flow Characteristics within In-Line Mixer for Water Treatment using CFD Technique (CFD모사 기법을 이용한 관내 혼화장치내 흐름 특성 평가)

  • Park, Dae-Jin;Park, Young-Oh;Park, No-Suk;Kim, Seong-Su;Wang, Chang-Kuen
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.351-358
    • /
    • 2008
  • The modified in-line mixer which was suggested in this study for small water treatment facilities was evaluated on the performance of coagulation. For the objectives of this research, computational fluid dynamics(CFD) simulation was applied for analysis of flow characteristics within the modified in-line mixer. For verifying the results of CFD simulation, wet tests for the pilot plant were conducted. The wet test was to measure the actual coagulant dispersion distribution on the overall cross-section at a distance of 5.5D from the chemical injection point. From the results of CFD simulation and wet test, it was shown that the coagulant dispersion within the modified in-line mixer was occurred more uniformly than within the existing PDM(Pump diffusion Mixer). The results have confirmed the modified in-line mixer had several advantages compared with the existing PDM in terms of dispersion efficiency.

Optimal Design of Bipolar-Plates for a PEM Fuel Cell (고분자 전해질 연료전지용 분리판 최적 설계)

  • Han, In-Su;Jeong, Jee-Hoon;Lim, Jong-Koo;Lim, Chan;Jung, Kwang-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF

Numerical Analysis of Molten Carbonate Fuel Cell Stack Using Computational Fluid Dynamics (CFD를 이용한 용융탄산염 연료전지 스택의 수치모사)

  • Lee, Kab-Soo;Cho, Hyun-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.155-161
    • /
    • 2005
  • In this paper, commercial CFD program FLUENT v5.3 is used for simulation of MCFC stack. Besides using conservation equations included in FLUENT by default, mass change, mole fraction change and heat added or removed due to electrochemical reactions and water gas shift reaction are considered by adding several equations using user defined function. The stacks calculated are 6 and 25 kW class coflow stack which are composed of 20 and 40 unit cells respectively. Simulation results showed that pressure drop took place in the direction of gas flow, and the pressure drop of cathode side is more larger than that of anode side. And the velocity of cathode gas decreased along with the gas flow direction, but the velocity of anode gas increased because of the mass and volume changes by the chemical reactions in each electrodes. Simulated temperature profile of the stack tended to increase along with the gas flow direction and it showed similar results with the experimental data. Water gas shift reaction was endothermic at the gas inlet side but it was exothermic at the outlet side of electrode respectively. Therefore water gas shift reaction played a role in increasing temperature difference between inlet and outlet side of stack. This results suggests that the simulation of large scale commercial stacks need to consider water gas shift reaction.

A Study on the 3-Dimensional Implementation of Computer-Aid Management of Stereo Images (입체 화상의 3차원 전산모사기 구현에 관한 연구)

  • Lee, Joong;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.179-184
    • /
    • 2009
  • Recent evolution of computer technology enhances the effectiveness of CFD(Computational Fluid Dynamics) analysis for the 3-dimensional complex transport phenomena including turbulent flows. Cheaper and easier than laser and ultra-sonic methods, the windows simulator name by CAMSI(Computer-Aided Management of Stereo Images) has been developed in order to implement the 3-dimensional image using a disparity histogram extracted from left and right stereo images. In our program using the area-based method, the matching pixel finding methods consist of SSD(Sum of Squared Distance), SAD(Sum of Absolute Distance), NCC(Normalized Correlation Coefficient) and MPC(Matching Pixel Count). On performing the program, stereo images on different window sizes for various matching pixel finding methods are compared reasonably. When the image has a small noise, SSD on small window size is more effective. Whereas there is much noise, NCC or MPC is more effective than SSD. CAMSI from the present study will be much helpful to implement the complex objects and to analyze 3-dimensional CFD around them.

The Comparison of the In-Situ Thermal Response Tests and CFD Analysis of Vertical-type Geothermal Heat Exchanger (수직형 지중 열교환기의 현장 열응답 시험과 CFD 해석 비교)

  • Sim, Yong-Sub;Lee, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3164-3169
    • /
    • 2013
  • In this study, a series of CFD analysis was performed in order to predict the leaving water temperature and the slope of in-situ thermal response tests of the vertical-type geothermal heat exchangers. The geothermal heat exchanger and surrounding ground formation were modeled using GAMBIT and simulation was used by utilizing FLUENT which is commercial CFD code. Comparing with the results of CFD and in-situ thermal response tests, the results of CFD was presented good agreement with $0.5^{\circ}C$ difference of Leaving Water Temperature and with 1.6% difference of the Slope.

Simulation of Detailed Wind Flow over a Locally Heated Mountain Area Using a Computational Fluid Dynamics Model, CFD_NIMR_SNU - a fire case at Mt. Hwawang - (계산유체역학모형 CFD_NIMR_SNU를 이용한 국지적으로 가열된 산악지역의 상세 바람 흐름 모사 - 화왕산 산불 사례 -)

  • Koo, Hae-Jung;Choi, Young-Jean;Kim, Kyu-Rang;Byon, Jae-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.192-205
    • /
    • 2009
  • The unexpected wind over the Mt. Hwawang on 9 February 2009 was deadly when many spectators were watching a traditional event to burn dried grasses and the fire went out of control due to the wind. We analyzed the fatal wind based on wind flow simulations over a digitized complex terrain of the mountain with a localized heating area using a three dimensional computational fluid dynamics model, CFD_NIMR_SNU (Computational Fluid Dynamics_National Institute of Meteorological Research_Seoul National University). Three levels of fire intensity were simulated: no fire, $300^{\circ}C$ and $600^{\circ}C$ of surface temperature at the site on fire. The surface heat accelerated vertical wind speed by as much as $0.7\;m\;s^{-1}$ (for $300^{\circ}C$) and $1.1\;m\;s^{-1}$ (for $600^{\circ}C$) at the center of the fire. Turbulent kinetic energy was increased by the heat itself and by the increased mechanical force, which in turn was generated by the thermal convection. The heating together with the complex terrain and strong boundary wind induced the unexpected high wind conditions with turbulence at the mountain. The CFD_NIMR_SNU model provided valuable analysis data to understand the consequences of the fatal mountain fire. It is suggested that the place of fire was calm at the time of the fire setting due to the elevated terrain of the windward side. The suppression of wind was easily reversed when there was fire, which caused updraft of hot air by the fire and the strong boundary wind. The strong boundary wind in conjunction with the fire event caused the strong turbulence, resulting in many fire casualties. The model can be utilized in turbulence forecasting over a small area due to surface fire in conjunction with a mesoscale weather model to help fire prevention at the field.

Analysis of Pipe Failure Period Using Pipe Elbow Erosion Model by Computational Fluid Dynamics (CFD) (전산유체역학 배관 곡면 침식 모사를 통한 배관 실패 주기 분석)

  • Nam, Chongyong;Lee, Yongkyu;Park, Gunhee;Lee, Gunhak;Lee, Won Bo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.133-138
    • /
    • 2018
  • Safety management has become even more important because of the safety and environmental issues that have arisen since the 2000s. However, the safety study requires many empirical data, so there are many limitations. In the case of pipe safety, simulation programs exist, but it is difficult to get data about the pipe internal erosion of the pipe. In this study, the erosion rate of the pipe elbow was simulated using computational fluid dynamics (CFD). Also, the failure period of the pipe was calculated by the limit state function using erosion rate. In the case of CFD pipe, a sample which is actually operated in Yeosu industrial complex was used, and the geometry and mesh formation were rationalized in terms of typical fluid dynamics simulations. Using the Discrete Phase Model (DPM) and the corrosion model, the erosion rate ($3.09227mm{\cdot}yr^{-1}$) was obtained from CFD simulations. As a result of applying the erosion rate to the limit state function, we obtained the pipe failure period value, 14.2 years to trigger a leak and 28.2 years to trigger a burst. Through these processes, we concluded that pipe erosion is one of the major failure modes. In addition to the results, this study has significance for suggesting the methodology of the pipe safety study.

A Study on Hydraulic Modifications of Low-Pressure Membrane Inlet Structure with CFD and PIV Techniques (CFD와 PIV 기법을 이용한 저압막 유입부 수리구조 개선에 관한 연구)

  • Oh, Jeong Ik;Choi, Jong-Woong;Lim, Jae-Lim;Kim, Donggil;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.607-618
    • /
    • 2015
  • This study was conducted to suggest hydraulic modification for improving evenness of inlet flow distribution into side stream type low-pressure MF (microfiltration) module using CFD (computational fluid dynamics) simulation and PIV (particle image velocimetry) techniques. From the results of CFD simulation for various typed inlet structure, it was investigated that installing internal orifice baffle in inlet the distribution channel could improve the evenness of inlet flow distribution over about 40%. Also, from the results of PIV measurements which were carried out for verifying the CFD simulation, it was observed that the momentum of the water body coming from the opposite side of the inlet was relatively larger. This momentum would generate strong shear force in the near of inlet side wall. On the other hands, occurrence of dead zone and eddy flow was confirmed in the opposite side.