• Title/Summary/Keyword: CFD 모델

Search Result 728, Processing Time 0.024 seconds

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

Field Experiment for Developing an Atmospheric Diffusion Model of a Livestock Odor (축산 악취의 확산 모델 개발을 위한 현장 실험)

  • Hong, S.W.;Lee, I.B.;Hwang, H.S.;Seo, I.H.;Kwon, H.J.;Bitog, J.P.;Yoo, J.I.;Kwon, K.S.;Ha, T.H.;Kim, Y.H.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.77-88
    • /
    • 2008
  • Odor is one of the major nuisances in the environment. In most countries, odor annoyance from livestock production is an increasing problem in community. In order to reduce the odor inconvenience and establish a good relation between livestock industries and the surrounding communities, many studies, such as diffusion simulations and field experiments, on the odor dispersion and its reduction have been investigated. These studies need to accompany the aerodynamic approach, as a main mechanism of diffusion phenomenon, and computational fluid dynamics(CFD) can be effectively used to study this kind of research. CFD considers both various wind conditions as well as topographical conditions to study aerodynamic phenomenon. Therefore the ultimate objective of the study was to develop an aerodynamic model to predict qualitatively and quantitatively odor diffusion from livestock. In this study, as the first step of this study, various phenomena and factors of odor diffusion from livestock houses were investigated through field experiments in 2007. Later, those data will be also used to verify the CFD accuracy as well as to develop 3-dimensional CFD model.

A Study on Performance Improvement of Multi-stage Pump Applying CFD Analysis Technique (CFD해석기법을 적용한 다단펌프 성능향상에 관한 연구)

  • Kim, Sang-Yu;Kim, Jae-Yeol;GAO, JIACHEN
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.70-76
    • /
    • 2022
  • Recently, the demand for ultra-precision processing has increased owing to the increase in the demand for high-performance ultra-precision optical parts in the fields of information technology (IT), bio, healthcare, aerospace, and future automobiles. In this study, a performance improvement of a multi-stage pump was achieved by improving the pump casing structure rather than using the existing performance improvement method. To verify the performance improvement, the CFD analysis reliability of the existing pump, Pump A, was verified using the FLUENT app in the analysis software ANSYS, and the pump casing was improved through the verified CFD analysis of Pump B. Therefore, we want to analyze the performance improvement.

Numerical Simulation of Ship-induced Wave Using FLOW-$3D^{(R)}$ (FLOW-$3D^{(R)}$를 이용한 항주파 수치모의)

  • Kang, Young-Seung;Kim, Pyeong-Joong;Hyun, Sang-Kwon;Sung, Ha-Keun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.255-267
    • /
    • 2008
  • Using the commercial CFD code FLOW-$3D^{(R)}$ which has an implicit General Moving Object (GMO) method, the ship-induced wave has been simulated. In the implicit GMO method of the FLOW-$3D^{(R)}$, a rigid body's motion which is either user-prescribed (prescribed motion) or dynamically coupled to fluid flow (coupled motion) can be computed with six degrees of freedom (DOF). The simulated horizontal wave patterns are agree with the wave patterns represented by depth Froude number. The model has been well-simulated to generate the depth-dependent wave transformation in comparison of uniform depth case to complicated depth case. Additionally, it shows that ship-induced waves have been reasonably generated by two ships passing each other and by a ship moving in a curve. Therefore, it is suggested that the FLOW-$3D^{(R)}$ model calibrated with observed data should provide more accurate prediction for the ship-induced wave in a certain fairway or harbor.

Modeling of Smoke Dispersion through a Long Vertical Duct (장대 수직 환기구를 통한 매연 확산의 모델링 연구)

  • Yoon, Sung-Wook
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.287-293
    • /
    • 2003
  • A long vertical duct is an essential installation for extracting smoke to the ground level when a fire occurs in an underground space. Due to the limitations of its basic assumptions, the existing two-layer zone model is unsuitable to model smoke dispersion through a long vertical duct. Therefore, an assessment was made to investigate the applicability of the field model, which is based on the computational fluid dynamics (CFD). A similar configuration to the published experimental work was modeled to test the validity. It is clear that under a consistent decision criterion based on the mass fraction, the field model (CFD) is able to predict that the diffusion front progresses up the shaft with exactly the same rate as that in the empirical correlation equation. This result is for better than the mathematically obtained equations in previously published research. Therefore, it can be said that the field model is an excellent option to predict the smoke dispersion through the long vertical shaft.

A study on the vaneless diffuser and volute casing design for the improvement of small centrifugal compressors (소형 원심 압축기의 성능 향상을 위한 베인 없는 디퓨저와 볼류트 케이싱의 설계에 관한 연구)

  • Jo, Jae Phil;Paek, Seung Yun;Kim, Sung Don;Ahn, Kyubok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3722-3730
    • /
    • 2015
  • The performance improvement of a small centrifugal compressor for waste water treatment has been conducted by the design change of vaneless diffuser and volute casing. Existing two compressors use a common impeller, but the width and length of the vaneless diffuser and the cross-sectional shape of the volute casing are different, respectively. Based on the experiment of the existing two compressors and their CFD results, the design of the vaneless diffuser and the volute casing has been changed. It was found that the strength of the interaction among the volute tongues, the vaneless diffusers and the impellers of two existing/one improved compressors, was affected by the cross-sectional area and inlet radial length of the volute casing including system losses' change. The efficiency of the impeller with one existing design was increased as the decrease of the width of the vaneless diffuser, but losses at the diffuser were accumulated. In conclusion, approximately 2.88%p efficiency increase at the design point of the new compressor with the improved design has been confirmed by CFD analysis results.

Numerical Study of Breakup Process of Diesel Spray (디젤분무의 분열과정에 대한 수치해석 연구)

  • Yeom, Jeong Kuk;Jung, Woo Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1489-1495
    • /
    • 2013
  • High-pressure flows are ubiquitous in many industrial fields. A representative application is fuel injection using a common-rail control system in diesel engines, where the injection pressure in the injector exceeds 1000 bar. In high-speed injection, the fluid injected through the nozzle undergoes breakup owing to the interaction with the ambient gas. The breakup process influences mixture formation, which in turn influences combustion in diesel engines. Therefore, it is very important to analyze the breakup process of fuel spray. The Reitz and Diwakar model and cascade atomization and breakup (CAB) model were used in this study as sub-models for the numerical analysis of the breakup process of fuel spray. This study aims to precisely analyze the breakup process of spray and to investigate the breakup frequency of the injected fuel. Consequently, it proposes a suitable sub-model for analyzing the breakup process of a diesel spray by using CFX, a commercial CFD program.

A Performance-based Design Example of Smoke Extraction System Using CFD Fire Simulation (CFD 화재 시뮬레이션을 이용한 여객선 제연설비의 성능기반 설계 사례)

  • Lee, Jung-Moo;Kim, Sung-Hoon;Lee, Sung-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.454-461
    • /
    • 2010
  • The new SOLAS regulation permits the alternative design approach for the approval of designs which deviate from those where prescriptive rules apply. The new approach is being promoted by recent advances of noble designs such as those employing large public spaces in passenger ships. From the respect of fire safety, it is needed to show that the level of safety of new design is equivalent to what can be achieved from the prescriptive rules where the fire simulation is regarded to be the essential tool. This paper provides an overview of the process of performance-based design of the smoke extraction system in a cafeteria of a ROPAX. FDS, a CFD fire simulation software is used to show that the field-model software can improve the fire safety over what are expected from prescriptive rule sets or zone-model application.

Sunroof Buffeting Simulation of a Simplified Car Model using PAM-FLOW (PAM-FLOW를 이용한 단순차량 모델의 썬루프 버페팅 소음 해석)

  • Lee, Dong-Guk;Park, Il-Kyoo;Lim, Jong-Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.198-204
    • /
    • 2014
  • This paper presents a benchmark test result of an application of computational fluid dynamics(CFD) analysis of automotive sunroof buffeting simulation. Computational analyses of flow over an open sunroof of a simple vehicle model called as HAWT(Hyundai aeroacoustic wind tunnel) model were performed to study the buffeting phenomenon and to predict the buffeting noise level and its frequency. Computations are performed for sunroofs with PAM-FLOW software which is one of powerful CFD code of ESI group. Numerical predictions are compared with result from the tunnel test measurements. It is shown that CFD analysis has great potential for sunroof design and development by predicting buffeting noise.

Performance Analysis of the NREL Phase IV Wind Turbine by CFD (CFD에 의한 NREL Phase IV 풍력터빈 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.652-655
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-${\varepsilon}$ model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(k-${\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

  • PDF