• 제목/요약/키워드: CFD:Computational Fluid Dynamics

검색결과 2,015건 처리시간 0.027초

표준 동안정 모델의 전산유체해석 및 풍동시험 결과 비교검증 (Comparison and Validation Study on Computational Fluid Dynamics and Wind Tunnel Test Results of Standard Dynamics Model)

  • 조동현;김승필;안은혜;최윤석;노지수;정형석
    • 한국항공우주학회지
    • /
    • 제45권3호
    • /
    • pp.217-225
    • /
    • 2017
  • 본 연구는 국내 외 풍동기관들의 정적 공력측정 결과의 상호 비교검증 및 EFD-CFD 검증을 위해 수행되었다. 공군사관학교에서는 NRC 모델 기반 표준 동안정 모델을 제작하여 정적 특성을 측정하고, 풍동시험의 정확성 검증을 위하여 한국항공우주연구원 및 NRC에서 측정된 정적 공력측정 데이터를 상호 비교하였다. 또한 풍동시험 결과를 전산해석 결과와 비교하였으며 전산해석 유동장에서 분석된 오차원인을 확인하기 위하여 스트레이크 영향성을 검토하였다. 그 결과, EFD-CFD 간 피칭모멘트의 경향성이 상이하였으며, 스트레이크 효과는 크게 나타나지 않았다. 따라서 후방 지지대, 표준 동안정 모델의 흡입구에서 발생하는 와류에 의한 오차 분석과 전산해석의 격자해상도 재구성 등의 추가연구 진행이 필요한 것으로 판단된다.

강합성 단면을 가진 사장교의 와류진동 발생 예측 (Prediction of Vortex-induced Vibration of the Cable-Stayed Bridge with Steel Composite Deck)

  • 조재영;조영래;이학은
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.449-453
    • /
    • 2007
  • After over a century of effort by researchers and engineers, the problem of bluff body flow, in particular vortex shedding frequency, remains almost entirely in the empirical, descriptive realm of knowledge. Computational methods have been systematically applied for vortex-induced vibrations of the cable-stayed bridge with steel composite deck by unsteady wind loadings due to vortex-shedding. The focus of this paper is to predict the vortex-induced vibration of the cable-stayed bridge with steel composite deck based computational fluid dynamics(CFD).

  • PDF

국가 그리드 구축을 통한 전산유체역학 연구 (Computational Fluid Dynamics Research based on National Grid Project)

  • 조금원;박형우;이상산
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.174-181
    • /
    • 2001
  • The Gird is a communication service that collaborates dispersed high performance computers, large-scale databases and modern equipments so that those can be shared and worked together. In this paper. CFD research based on National Grid project is discussed. To validate the Grid technology, the flow past ONERA M6 wing and the flow past infinite wing are simulated on the National Grid testbed.

  • PDF

Setting the scene: CFD and symposium overview

  • Murakami, Shuzo
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.83-88
    • /
    • 2002
  • The present situation of CWE(Computational Wind Engineering) and the papers presented to the CWE 2000 Symposium are reviewed from the following viewpoints; 1) topics treated, 2) utilization of commercial code (software), 3) incompleteness of CWE, 4) remaining research subjects, 5) prediction accuracy, 6) new fields of CWE application, etc. Firstly, new tendencies within CWE applications are indicated. Next, the over-attention being given to the application field and the lack of attention to fundamental problems, including prediction error analysis, are pointed out. Lastly, the future trends of CFD (Computational Fluid Dynamics) applications to wind engineering design are discussed.

Navier-Stokes equations을 활용한 익형의 점성경계층 특성분석 (Analysis of Airfoil Boundary Layer Characteristics with Navier-Stokes Equations)

  • 김철완
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.199-201
    • /
    • 2011
  • NACA0012 Airfoil was simulated with Computational Fluid Dynamics(CFD) and the aerodynamic characteristics was analyzed for various far-field boundary distances ranging from 10 airfoil chord to 50 chord Drag coefficient distribution was dependent on the far-field distance and circulation, integrated along the loop inside the flow region, was also dependent. It was turned out that some corrections based on the circulation should be added to the far-field boundary condition for accurate airfoil simulation.

  • PDF

판토그라프 주변의 유동 및 소음 특성에 관한 연구 (A Study on Aerodynamic and Aeroacoustic Characteristics around Pantograph)

  • 유승원;민옥기;박춘수;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.529-536
    • /
    • 2000
  • This paper describes the analysis of aerodynamics and the prediction of airflow induced noise around simplified pantograph. First, computational fluid dynamics (CFD) is conducted far several model to evaluate linear/nonlinear flow field characteristics due to high speed flow and the CFD results support the computational aeroacoustics. The accurate prediction of the aeroacoustic analysis is necessary for designers to control and reduce the airflow induced noise. We adopt the acoustic analogy based on Ffowcs Williams- Hawkings (FW-H) equation and predict aeroacoustic noise.

  • PDF

마이크로 모세관 유동 해석을 위한 CFD-VOF 모텔 응용 (Application of CFD-VOF Model to Autonomous Microfluidic Capillary System)

  • 정자훈;임예훈;한상필;석지원;김영득
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.224-229
    • /
    • 2004
  • The objective of this work is not only to perform feasibility studies on the CFD (computational fluid dynamics) analysis for the capillary system design but also to provide an enhanced understanding of the autonomous capillary flow. The capillary flow is evaluated by means of the commercial CFD software of FLUENT, which includes the VOF (volume-of-fluid) model for multiphase flow analysis. The effect of wall adhesion at fluid interfaces in contact with rigid boundaries is considered in terms of static contact angle. Feasibility studies are first performed, including mesh-resolution influence on pressure profile, which has a sudden increase at the liquid/gas interface. Then we perform both 2D and 3D simulations and examine the transient nature of the capillary flow. Analytical solutions are also derived for simple cases and compared with numerical results. Through this work, essential information on the capillary system design is brought out. Our efforts and initial success in numerical description of the microfluidic capillary flows enhance the fundamental understanding of the autonomous capillary flow and will eventually pave the road for full-scale, computer-aided design of microfluidic networks.

  • PDF

전산유체역학을 활용한 폐플라스틱열분해 반응기의 기체분산판에 대한 유동해석 (Effects of Thermal Dispersion Damage on the Pyrolysis and Reactor Relarionship Using Comutational Fluids Dynamics)

  • 한종일;박성수;김인재;나광호
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.53-60
    • /
    • 2023
  • The Computational Fluid Dynamics (CFD) model is a method of studying the flow phenomenon of fluid using a computer and finding partial differential equations that dominate processes such as heat dispersion through numerical analysis. Through CFD, a lot of information about flow disorders such as speed, pressure, density, and concentration can be obtained, and it is used in various fields from energy and aircraft design to weather prediction and environmental modeling. The simulation used for fluid analysis in this study utilized Gexcon's (FLACS) CODE, such as Norway, through overseas journals, for the accuracy of the analysis results through many experiments. It was analyzed that a technology for treating two or more catalysts with physical properties under low-temperature atmospheric pressure conditions could not be found in the prior art. Therefore, it would be desirable to establish a continuous plan by reinforcing data that can prove the effectiveness of producing efficient synthetic oil (renewable oil) through the application that pyrolysis under low-temperature and atmospheric pressure conditions.

Investigation on helix type labyrinth seal to minimize leakage flow of cryogen for rotating superconducting machines

  • Yubin Kim;Kihwan Kim;Seungcheol Ryu;Hojun Cha;Seokho Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권1호
    • /
    • pp.25-30
    • /
    • 2024
  • High-temperature superconducting rotors offer advantages in terms of output-to-weight ratio and efficiency compared to conventional phase conduction motors or generators. The rotor can be cooled by conduction cooling, which attaches a cryocooler, and by refrigerant circulation, which uses circulating liquid or gas neon, helium and hydrogen. Recent work has focused on environmental issues and on high-temperature superconducting motors cooled with liquid hydrogen that can be combined with fuel cells. However, to ensure smooth supply and return of the cryogenic cooling fluid, a cryogenic rotational coupling between the rotating and stationary parts is necessary. Additionally, the development of a sealing structure to minimize fluid leakage applicable to the coupling is essential. This study describes the design and performance evaluation of a non-contact sealing method, specifically a labyrinth seal, which avoids power loss and heat load caused by friction in contact sealing structures. The seal design incorporates a spiral flow path to reduce leakage using centrifugal force, and computational fluid dynamics (CFD) simulations were conducted to analyze the flow path and rotational speed. A performance evaluation device was configured and employed to evaluate the designed seal. The results of this study will be used to develop a cryogenic rotational coupling with supply and return flow paths for cryogenic applications.

지열원 히트펌프를 이용한 도로융설시스템의 CFD 성능예측에 관한 기초연구 (A Basic Study on the Performance CFD simulation of Road Snow-melting system by Ground Source Heat Pump)

  • 최덕인;김중현;김진호;황광일
    • 한국지열·수열에너지학회논문집
    • /
    • 제6권2호
    • /
    • pp.23-28
    • /
    • 2010
  • Fluent ver.6.3 is used as CFD(Computational Fluid Dynamics) simulator to predict the performance of snow-melting system by geothermal pipes energy. As the results of this simulation, it is clearly shown that $50^{\circ}C$ of working fluid in to geothermal evaluated as more effect comparing to $45^{\circ}C$ of working fluid. The Surface temperature is come to $5^{\circ}C$ at 1m/s speed and $50^{\circ}C$ temperature of the working fluid.