• Title/Summary/Keyword: CFBC

Search Result 71, Processing Time 0.024 seconds

RDF combustion in circulating fluidized bed combustors (순환유동층 보일러에서 RDF 연소연구)

  • Shun, Dowon;Bae, Dal Hee;Jo, Sungho;Lee, Seung Yong;Park, Jae-Hyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.186.2-186.2
    • /
    • 2011
  • RDF 연료의 열이용은 2003 폐플라스틱 고형연료 사용에 관한 고시가 나온이후 생산과 이용이 꾸준히 증가하는 추세이며 최근에는 원주, 대구, 부산 등 각 지역의 RDF 생산시설 구축 및 열병합 보일러 건설사업의 추진으로 더욱 활발하게 진행되고 있다. 본 연구는 순환유동층 시범 연소로에서 RDF를 전용으로 연소하여 그 연소특성을 고찰하고 상용 보일러 설계를 위한 연소자료를 축적하는 데 있다. 본 연구는 실험을 위하여 자체로 건설한 순환유동층 보일러에서 수행하였다. 연소 연구에서는 연소특성과 더불어, 환경기술과 연소로의 부식방지에 관한 기술을 고찰하였다. 보일러의 스팀사양은 $300^{\circ}C$와 15ata 이상으로 하였다. 설치된 보일러는 장시간의 운전과 반복 실험을 통해 상용 규모 보일러의 설계에 적용할 연소자료를 확보하였다. 또한 연료특성을 파악하기 위하여 국내에서 생산되는 RPF와 RDF 각 일종을 입수하여 성분을 분석하고 그 특성 자료를 비교하였다. RDF는 순환유동층 보일러에서 뛰어난 연소 효율을 나타내었으며 배연특성도 연소하는 동안 일정하게 배출되었다. 온도나 압력등 연소 변수는 RDF는 연소실험 동한 안정적인 값을 나타내었다. 대부분의 배연물질은 환경기준을 충족할 수 있었다. 다만 HCl의 배출 특성은 환경 규제치를 넘어 섰으며 별도의 배가스 처리기술을 적용하여 환경기준을 맞출 수 있었다.

  • PDF

Combustion Study of 1MWe Circulating Fluidized Boiler for RDF (1MWe급 순환유동층 열병합 보일러 운전연구)

  • Shun, Do-Won;Bae, Dal-Hea;Jo, Sung-Ho;Lee, Seung-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.837-842
    • /
    • 2012
  • A pilot scale circulating fluidized boiler (CFB) for refuse derived fuel (RDF) is designed and constructed to demonstrate a performance of CFB technology for waste fuel utilization. The boiler has a design capacity of 6 MWth with $400^{\circ}C$ 38 ata steam generation performance. The maximum steam rate of the boiler was about 8 ton/h. The main component of the fuel was RDF (Refuse Derived Fuel) with high volatile contents and showed fast ignition and easy combustion. The pilot plant showed over 99.5% of combustion efficiency. Stable operation of RDF CFBC depended on the content of non combustion materials other than ash and fast removal of them. Emission level was under legal limit except that of HCl without external flue gas treatment facilities. Also about 60% of fuel chlorine was absorbed to fly ash particles. For HCl emission control flue gas treatment technology is required such as wet and dry scrubber in order to comply with Korean regulation.

A Study of Co-Combustion Characteristics of North Korean Anthracite and Bituminous Coal in 2 MWe CFBC Power Plant (2 MWe 순환유동층 발전 플랜트에서 유연탄과 북한 무연탄 혼소시험 특성 연구)

  • Han, Keun-hee;Hyun, Ju-soo;Choi, Won-kil;Lee, Jong-seop
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.580-586
    • /
    • 2009
  • In this study, co-combustion characteristics of Chinese bituminous coal and North Korean anthracite were investigated using a 2 MWe scale circulating fluidized bed power plant. At first, the combustion efficiency of bituminous coal of China and Australia as a function of excess air ratio and temperature were observed. The results showed that the combustion efficiency was influenced by particle size and volatile content of coal, the combustion efficiency of Chinese bituminous coal was over 99.5%. The unburned carbon particles from fly ash and bottom ash were a content 5~7% and 0.3%, respectively. The combustion efficiency with the mixture ratio 20% of bituminous coal and anthracite decreased over 5% because of the increase of entrained particles by a small average particle size of anthracite in the combustor. However, the outlet concentration of $SO_2$ and $NO_x$ was not changed remarkably. The concentrations of the typical air pollutants such as $NO_x$ and $SO_2$ were 200~250 ppm($O_2$ 6%), 100~320 ppm($O_2$ 6%) respectively. The outlet concentration of $NO_x$ was decreased to 30~65% with $NH_3$ supplying rate of 2~13 l/min in SCR process. The $SO_x$ removal efficiency was up to 70% by in-furnace desulfurization using limestone with Ca/S molar of approximately 6.5. With wet scrubbing using $Mg(OH)_2$ as absorbent, the $SO_x$ removal efficiency reached 100% under near pH 5.0 of scrubbing liquid.

A Study on the Design Concept & Construction Method of Office Building with Stacks at Thermal Power Plant (화력발전소 연돌통합형 종합사무동의 설계개념과 시공공법 연구)

  • Kim, Si-Hyun;Choi, Jang-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.677-686
    • /
    • 2016
  • A thermal power plant is the first CFBC (Circulating Fluidized Bed Combustion) power plant consisting of 2 boilers-1 turbine. The optimal height of a stack needs to be approximately 156 meters in the case of this thermal power plant; however, the thermal power plant sites satisfy a function and reduce the construction cost by using mountains in the sites after cutting the ground and locating an integrated office and chimney at an altitude of 70 meters thereby lowering the height of the stack to 86 meters. In addition, the integrated office, which has a combined stack style with a unique design, is constructed by connecting with 2 stacks and disposing the office and an observatory in the space between them. Therefore, this study examined the design concept that fulfils the structural, functional, and aesthetic factors, harmoniously by joining the integrated office and the stack, which are disparate, and investigated special construction methods (Slip Form, Steel Inner Flue & Lift-up) through which heterogeneous architectures are structurally, functionally, and aesthetically constructed.

A Study on the CO2 Removal Efficiency with Aqueous MEA and Blended Solutions in a Vortex Tube Type Absorber (Vortex Tube 형 흡수장치에서 MEA와 혼합흡수용액을 이용한 CO2 제거 효율 고찰)

  • Ryu, Woo-Jung;Han, Keun-Hee;Choi, Won-Kil;Lee, Jong-Sub;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.795-800
    • /
    • 2009
  • In this study, the $CO_2$ removal characteristics of the Vortex tube type absorbtion apparatus were investigated to enhance the compactness of $CO_2$ absorption process and to reduce the amount of absorbing solution of the $CO_2$ separation process. The Vortex tube with the diameter of 17 mm and the length of 250mm was introduced in the experimental apparatus to treat $20Nm^3/hr$ of $CO_2$ containing flue gas. The flue gases for experiments containing 11~13 vol% of $CO_2$ were supplied from the coal-firing CFBC power plant with 12 ton/hr of steam producing capacity. The mixed solutions of 20 wt% of MEA as base solution with the adding solutions like HMDA, AMP and KOH were used as absorbents. The experiments were executed under the various conditions like the absorbing solution concentrations in the range of 20 to 50 wt%, the flow rate of $CO_2$ containing flue gases in the range of 6 to $15Nm^3/hr$ and the flow rate of absorbing solution in the range of 1.0 to 3.0 l/min. As a results, the $CO_2$ removal efficiency of mixed absorbent of 20 wt% of MEA with HMDA was remarkable. From this study, we concluded that the efficient separation of $CO_2$ from flue gases using the features of the Vortex tube type absorbing unit for gas/liquid contact and the separation of gas/liquid be possible. But more works are needed to increase the $CO_2$ removal efficiency of Vortex tube process.

Field Applicability and Manufacturing of Foam Concrete as Filler with the Low-strength and High-flow for Repair System of Ground Subsidence (지반 함몰 복구용 저강도·고유동 충전재로서 기포콘크리트 연구 및 현장적용)

  • Ma, Young;Kim, Beom-Seok;Woo, Yang-Yi;Jung, Kyung-Hun;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.43-52
    • /
    • 2020
  • The objectives of this study were to identify the optimal mix of foam concrete with the low-strength and high-flow for the repairing ground subsidence situation emergently by utilizing a large amount of industrial by-products and evaluate the possibility by applying it to the site. The factors of the experiment were the mixing ratio of mixing water and a foaming agent and the mixing ratio of foam over paste volume. The optimal mix identified by the experiment was applied to the field and basic properties were evaluated. The results of the experiment showed that the optimal mixing ratio of mixing water and the foaming agent was 10%. Moreover, when the mixing ratio of pre-foam over paste volume was 170%, it satisfied the target. However, to ensure stable quality when applying to the field, the foam mixing ratio was set 140% for the field application. The field application test of foam concrete with the low-strength and high-flow using an eco-friendly binder satisfied all target performances. Therefore, the possibility of using it as a mixture and construction method for a ground repair system is confirmed. However, there was a quality deviation between the upper part and the lower part due to the separation between foam and paste. Consequently, further studies are needed to improve it.

The Fundamental Properties of Foamed Concrete as the Eco-friendly Ground Repair System for Cast in Site Using the CSA (CSA를 사용한 친환경 지반보수용 현장 기포콘크리트의 기초 특성 검토)

  • Woo, Yang-Yi;Park, Keun-Bae;Ma, Young;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study aimed to develop a foam concrete material for a ground repair system that has low strength and low fluidity by using an eco-friendly binder, which substitutes industrial by-products for more than 90% of cement. Basic properties were evaluated after substituting a small amount of calcium sulfo aluminate (CSA) for the binder to improve the sinking depth rate and volume change, commonly found when it had a large amount of industrial by-products. The substitution rates of CSA for the eco-friendly binder used for the foam concrete were 2.5, 5, and 10%. Fresh properties, hardened properties, pore structure, and hydrates were analyzed. Experimental results showed that using only 2.5% of CSA could improve the deep sinking depth which occurred when using an eco-friendly binder. As a result, the weight difference between the upper, middle, and lower parts of cast specimens was improved even after being hardened. The addition of CSA also contributed to the formation of small, uniformly sized closed pores and improved initial strength. However, when the proportion of CSA increased, the long-term strength decreased. However, it satisfied the target strength when 5% or less of CSA was used. The results of this study revealed that it was possible to manufacture foam concrete with low strength and high fluidity for repairing ground satisfying target qualities by adding 2.5% of CSA to the eco-friendly binder containing a large amount of industrial by-products.

Re-carbonation of Calcined Limestone Under Oxy-Circulating Fluidized Bed Combustion Conditions (순산소 순환유동층 연소 조건에서 생석회의 재탄산화 반응)

  • Kim, Ye Bin;Gwak, You Ra;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.856-863
    • /
    • 2018
  • In order to investigate the re-carbonation behaviors of limestones in an oxy-circulating fluidized bed combustor (Oxy-CFBC), the re-carbonation characteristics of domestic 4 different limestone samples were analyzed in a thermogravimetric analyzer (TGA-N1000) with the higher concentration of $CO_2$. Effect of reaction temperature ($600{\sim}900^{\circ}C$) and $CaCO_3$ content (77~95%) of limestones were determined and the mass change of the CaO was observed. Under the temperature of $800^{\circ}C$, the conversion rate increased with increasing reaction temperature. However, the conversion rate decreased with increasing reaction temperature over $800^{\circ}C$. In the case of $CaCO_3$ content, the conversion was remarkably different at $870^{\circ}C$. In addition, reaction rate equations for simulating the re-carbonation of limestone by using gas solid reaction models were proposed in this study.

Assessing Conservation Priority of Private Land in Unexecuted Urban Parks in Seoul Using Betweenness Centrality Analysis (매개중심성 분석을 활용한 서울시 미집행공원 내 사유지 보전 우선순위 평가)

  • Hwang, Byungmook;Ko, Dongwook W.;Kang, Wanmo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.22-34
    • /
    • 2021
  • The implementation of the sunset provision of unexecuted urban parks in Seoul has been postponed; however, the mentioned parks still remain vulnerable since they can be subject to development under certain circumstances. Local governments may purchase the parks to prevent their loss but are constrained due to limited resources. The purpose of this study is to prioritize the purchase of unexecuted urban parks in Seoul based on landscape connectivity, which represents the important role of allowing the movement of wildlife and providing biodiversity in urban environments. In this study, we used four potential scenarios (PB100, PB1, PA100, PA1), which reflects the degree of land cover change resulting from the implementation of the sunset provision, and the role of Han River as a conduit or barrier for wildlife movement. Landscape connectivity was evaluated by calculating current flow betweenness centrality (CFBC). This was used to rank the importance of the unexecuted urban parks in Seoul. The results demonstrated that the implementation of the sunset provision will greatly decrease the connectivity of all parks in Seoul and particularly more so for parks in the southern part of the city. In addition, the results suggested that the low connectivity of Han river will diminish the connectivity around Bukhansan Mountain in the northern part of Seoul. Our study can be used for the prioritization of purchase, since it has the ability to evaluate the anticipated vulnerability of each park's connectivity after the sunset provision.

A Study of Nitrous Oxide Decomposition using Calcium Oxide (Calcium Oxide를 이용한 N2O 분해에 관한 CO2의 영향 연구)

  • Paek, Jin-Young;Park, Yeong-Sung;Shun, Dowon;Bae, Dal-Hee
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.746-751
    • /
    • 2002
  • Fluidized bed combustion is a coal combustion technology that can reduce both SOx and NOx emission; SOx is removed by limestone that is fed into the combustion chamber and the NOx is reduced by low temperature combustion in a fluidized bed combustor and air stepping, but $N_2O$ generation is quite high. $N_2O$ is not only a greenhouse gas but also an agent of ozone destruction in the stratosphere. The calcium oxide(CaO) is known to be a catalyst of $N_2O$ decomposition. This study of $N_2O$ decomposition reaction in fixed bed reactor packed over CaO bed has been conducted. Effects of parameters such as concentration of inlet $N_2O$ gas, reaction temperature, CaO bed height and effect of $CO_2$, NO, $O_2$ gas on the decomposition reaction have been investigated. As a result of the experiment, it has been shown that $N_2O$ decomposition reaction increased with the increasing fixed bed temperature. While conversion of the reaction was decreased with increasing $CO_2$ concentration. Also, under the present of NO, the conversion of $N_2O$ decomposition is decreased. From the result of kinetic study gained the heterogeneous reaction rate on $N_2O$ decomposition. In the case of $N_2O$ decomposition over CaO, heterogeneous reaction rate is. $\frac{d[N_2O]}{dt}=\frac{3.86{\times}10^9{\exp}(-15841/R)K_{N_2O}[N_2O]}{(1+K_{N_2O}[N_2O]+K_{CO_2}[CO_2])}$. In this study, it is found that the calcium oxide is a good catalyst of $N_2O$ decomposition.