• Title/Summary/Keyword: CEC

Search Result 545, Processing Time 0.026 seconds

Influence of Physicochemical Properties on Cesium Adsorption onto Soil (토양의 물리화학적 특성이 세슘 흡착에 미치는 영향)

  • Park, Sang-Min;Lee, Jeshin;Kim, Young-Hun;Lee, Jeung-Sun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • Cesium (Cs) generated by nuclear accidents is one of the most hazardous radionuclides because of its gamma radiation and long half-life. Especially, when Cs is exposed on the soil environments, Cs is mainly adsorbed on the topsoil and is strongly combined with tiny soil particle including clay minerals. The adsorption of Cs onto soil can vary depending on various physicochemical properties of soil. In this study, the adsorption characteristics between soil and Cs were investigated according to various physicochemical properties of soil including organic matter contents, cation exchange capacity (CEC), soil particle size, and the types of clay minerals. Soil organic matter inhibited the adsorption of Cs onto the soil because organic matter was blocking the soil surface. In addition, it was estimated that the CEC of the soil influenced the adsorption of Cs onto the soil. Moreover, more Cs was adsorbed as the soil particles size decreased. It was estimated that Cs was mostly adsorbed onto the topsoil, this is related to the clay mineral. Therefore, soil organic matter, CEC, soil particle size, and clay minerals are considered the key factors that can influence the adsorption characteristics between soil and Cs.

Comparison of the effect of peat moss and zeolite on ammonia volatilization as a source of fine particulate matter (PM 2.5) from upland soil

  • Park, Seong Min;Hong, Chang Oh
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.907-914
    • /
    • 2019
  • Ammonia (NH3) that reacts with nitric or sulfuric acid in the air is the major culprit contributing to the formation of fine particulate matter (PM2.5). NH3 volatilization mainly originates from nitrogen fertilizer and livestock manure applied to arable soil. Cation exchange capacity (CEC) of peat moss (PM) and zeolite (ZL) is high enough to adsorb ammonium (NH4+) in soil. Therefore, they might inhibit volatilization of NH3. The objective of this study was to compare the effect of PM and ZL on NH3 volatilization from upland soil. For this, a laboratory experiment was carried out, and NH3 volatilization from the soil was monitored for 12 days. PM and ZL were added at the rate of 0, 1, 2, and 4% (wt wt-1) with 354 N g m-2 of urea. Cumulative NH3-N volatilization decreased with increasing addition rate of both materials. Mean value of cumulative NH3-N volatilization across application rate with PM was lower than that with ZL. CEC increased with increasing addition rate of both materials. While the soil pH increased with ZL, it decreased with PM. Increase in CEC resulted in NH4+ adsorption on the negative charge of the external surface of both materials. In addition, decrease in soil pH hinders the conversion of NH4+ to NH3. Based on the above results, the addition of PM or ZL could be an optimum management to reduce NH3 volatilization from the soil. However, PM was more effective in decreasing NH3 volatilization than ZL due to the combined effect of CEC and pH.

Synthesis of Columnar Na-P Zeolite by Hydrothermal Process from Natural Zeolite of Korea (천연 Zeollte로부터 열수합성에 의한 주상 Na-P Zeolite합성)

  • Zhang, Yong-Seon;Jung, Pil-Kyun;Kim, Sang-Hyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.357-366
    • /
    • 2003
  • This study was conducted to develop n convenient and efficient granular type absorbent with high CEC from powdery zeolite, which is a waste produced while crushing the natural zeolite of Korea to get a particular particle size. The change of mineralogical characteristics during hydrothermal alternation of natural zeolite to Na-P zeolite in alkaline solution at various reaction times was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and total elemental analysis. The columnar aggregate of Na-P Zeolite was produced by calcinating the natural zeolite-charcoal extrudates of about 3 mm diameter. In 24 hours reaction, clinoptillonite, mordenite and feldspar in natural zeolite were disappeared by 3 N NaOH treatment, while Na-P Zeolite with spherical granular structure was newly detected by XRD. As increasing reaction time, Si/Al ratio in remaining solution was deceased. The CEC of the synthesized material increased more than 2 times compared with that of natural zeolite, although the diameter of Na-P zeolite were rather increased.

Chemical Treatment of Low-level Radioactive Liquid Wastes(II) (The Determination of Cation Exchange Capacity on various Clay Minerals)

  • Lee, Sang-Hoon;Sung, Nak-Jun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.75-81
    • /
    • 1977
  • This experiment has been carried out to determine the pH dependent cation exchange capacity concerning the sorption phenomenon of long-lived radionuclides contained in low-level liquid radioactive waste on various clay minerals. The pH dependent cation exchange capacity determined by Sawhney's method are used to the analysis of sorption phenomenon. About 70 percent of the total cation exchange capacity is contributed by the pH dependent CEC due to the negative charge originated naturally in clays in case of clinoptilolite, vermiculite and sodalite. It is sugested in this test that the high neutral salt CEC, that is, highly charged clays would show good fixation yield. The removal of radionuclides at the pH range more than pH 9 is considered the hydroxide precipitation of metal ion rather than the cation exchange. The Na-clay prepared by the method of successive isomorphic substitution with electrolyte showed a considerable improvement in removal efficiency for the decontamination.

  • PDF

Correlation Analysis between Forest Community and Environment Factor of Nari Basin in Ulleung Island (울릉도 나리분지의 산림군락과 환경요인과의 상관관계)

  • Chung, Jae-Min;Yoon, Jun-Hyuck;Shin, Jae-Kwon;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • This study was carried out to provide the basic information for effective preservation and management of forest community of Nari basin in Ulleung Island. Forest community in Nari basin was classified into Fagus engleriana community, Sorbus amurensis community, Pinus densiflora community, Celtis jessoensis community and Alnus maximowiczii community. As the result of DCCA ordination analysis, sea level among environmental factors had high correlation with community distribution. Fagus engleriana community and Sorbus amurensis community correlated highly with aspect, Na content, and C/N ratio. There was a high correlation between Celtis jessoensis community and the content of Ca and K. Alnus maximowiczii community was distributed in site where CEC content is high. Pinus densiflora community was distributed in site where the content of Ca and CEC is high.

Enhancement of Soil Physicochemical Properties by Blending Sand with Super Absorbent Polymers of Different Swelling Capacities (팽윤 능력이 다른 고흡수성수지(Super Absorbent Polymers)의 혼합 비율별 모래 토양의 물리화학성 변화)

  • Young-Sun Kim;Tae-Wooung Kim;Yun-Seob Kim;Yang-Ho Na;Geung-Joo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Super absorbent polymers (SAPs) are hydrophilic molecules that can absorb large amounts of water. This study was conducted to investigate the enhancement of the physicochemical properties of sand soil blended with three SAPs imbibed with 100, 150, and 200-fold water. Three treatments were applied, namely, 100SAP, 150SAP, and 200SAP. The three SAPs were blended at concentrations of 0% (control), 3%, 5%, 7%, and 10% with sand. The pH, electrical conductivity, and cation exchangeable capacity (CEC) of soil blended with the three SAPs were pH 6.35-6.46, 0.09-0.65 dS/m, and 1.42-1.92 cmolc/kg, respectively, and their capillary porosity, total porosity, and saturated hydraulic conductivity were 21.0-29.3%, 39.2-48.7%, and 272-470 mm/hr. CEC, capillary porosity, total porosity, and saturated hydraulic conductivity of soil were positively correlated with the ratio of the SAPs (p<0.01). These results indicate that blending sand soil with SAPs increased CEC, capillary porosity, and saturated hydraulic conductivity, thus improving the nutrient-retention capacity, water-retention capacity, and permeability of the soil.

Comparison of Soil Physicochemical Properties According to the Sensitivity of Forest Soil to Acidification in the Republic of Korea (우리나라 산림토양의 산성화 민감도평가와 그에 따른 토양 이화학적 특성 비교분석)

  • Lee, Ah Lim;Koo, Namin
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • The sensitivity of forest soil to acidification in the Republic of Korea (ROK) was evaluated based on pHH2O, cation exchange capacity (CEC), and base saturation (BS). Sensitivity to acidification was categorized into three grades: adequate level (AL, pH ≧ 4.2, CEC ≧ 15cmol/kg, BS ≧ 15%), caution level (CL, at least one indicator is below AL), and severe Level (SL, all three indicators are below AL). Soil samples were collected from the 65 stationary monitoring plots (40 × 40 ㎢), distributed throughout ROK. Only 19% of soil samples were classified as AL, while 66% and 15% were CL and SL, respectively. The median of pHH2O, CEC, BS, and Ca/Al indicator in AL soils was pH 4.64, 20.7cmol/kg, 29%, and 6.3, respectively. Moreover, BCex (K+, Mg2+, Ca2+) and available phosphorus (AP) concentration compared with a threshold value and molar ratio of BCex and AP to total nitrogen (TN) was high. This indicates that AL soils have a good nutrient condition. The molar Ca/Al ratio, an indicator for toxicity of exchangeable aluminum (Alex), was more than 1, indicating no negative impact of Alex on plant growth. On the contrary, the median of pHH2O, CEC, and BS in SL soils was pH 4.02, 13.2cmol/kg, and 10%, respectively. The Ca/Al index was less than 0.6, which indicates that negative impacts of Alex on plants were high. Furthermore, both the concentration of BCex in SL soils and the BCex/TN ratio were the lowest among the three acidity degrees. This shows that SLsoils can be degraded by soil acidification compared with less acidic soils.

Study of Utilization of Natural Zeolites as Functional Materials for Water Purification (II): Adsorption Properties of Heavy Metal Ions by Domestic Zeolites (천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구 (II): 국내산 제올라이트의 중금속 이온 흡착 특성)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.201-213
    • /
    • 2003
  • The adsorption property and ability of domestic zeolites for some heavy metal ions (Ag, Pb, Cr, Cu, Zn, Mn), which may cause a serious environmental problem in industrial wastewater, were evaluated on ore unit through a series of adsorption experiments together with careful examinations of mineral composition and properties of the zeolites. Though the adsorption behavior basically took place in the form of a cation exchange reaction, the higher CEC value does not necessarily to imply the higher adsorption capacity for a specific heavy metal. A general trend of the adsorption selectivity for heavy metals in the zeolites is determined to be as follow: $Ag\geq$Pb>Cr,Cu$\geq$Zn>Mn, but the adsorption properties of heavy metal ions somewhat depend on the species and composition of zeolite. Clinoptilolite tends to adsorb selectively Cu in case of Cr and Cu, whereas heulandite prefers Cr to Cu. A dominant adsorption selectivity of the zeolite ores for Ag and Pb is generally conspicuous regardless of their zeolite species and composition. The zeolite ores exhibit a preferential adsorption especially for $Ag^{+}$ so as not to regenerate when treated with $Na^{+}$ . In the adsorption capacity for heavy meta ions, the zeolites differ in great depending on their species: ferrierite>clinoptilolite>heulandite. Considering the CEC value of mordenite, the mordenite-rich ore appears to be similar to the clinoptilolite ore in the adsorption capacity. The adsorption capacity for heavy metals is not positively proportional to the CEC values of the zeolites measured by the exchange reaction with ammonium ion. In addition, the adsorption capacity roughly tends to depend on the zeolite contents, i.e., the grade of zeolite ore, but the trend is not consistent at all in some ores. These may be caused by the adsorption selectivity for some specific heavy metals, the presence of possible stacking micro-faults and natural cations such as K hardly to exchange in the zeolite. Considering the economic availability and functional effectiveness as natural zeolite resources, clinoptilolite ores could be applicable to utilize the domestic zeolites for the removal of heavy metals.

Numerical Approach for Evaluation of Forest Soil Fertility (수치적(數値的) 접근방법(接近方法)에 의(依)한 산림토양(山林土壤)의 비옥도(肥沃度) 평가(評價))

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 1977
  • Forest soil fertility was evaluated through the approach of numerical method. In this study, the soil chemical properties analyzed for 35 different soil series as table 2 were cited in numerical analysis. Minimum contents of essential nutrients in the surface soil for a satisfactory growth of tree in the plantation were evaluated by comparing with Wild's standard as table 1. Demanding level of fertilization were evaluated by using the formula 1 as table 5. Similar relation of soil chemical properties between soil series were calculated through formula 2, and then classified into 5 groups in soil chemical properties. 1. General chemical properties of surface soil in case of 35 soil series. About 40 percent of 35 different soil series are less than 2 percent in organic matter, 10 ppm in available phosphorus, 1.25m.e/l00g in exchangeable calcium and 0.5m.e/l00g in exchangeable magnesium. Generally, shortage of exchangeable potash are not found. CEC less than 10m.e/l00g are in two thirds and strong acid soil less than PH 5.5 are in about four fifths. 2. Soil series requested or not the fertilization are indirectly evaluated from the formula 1 using the relative figure of chemical components of CEC, OM and MgO. Through this analysis, 8 different soil series have very poor quality in soil chemical capacity so that demands highly the fertilization. On the other hand, other 13 different soil series group have not been thought to need the fertilization according to chemical guality. 3. By the results comparing the similarity of chemical properties of forest soil, it is thought to be suitable that the forest soil fertility are divided into 5 groups as follows: 1. Low CEC soil 1-1 Low organic matter soil less than 2 percent 1-2 Medium organic matter soil less than 4 percent 2. High CEC and organic matter soil 2-1 Low magnesium soil 2-2 High magnesium soil 3. High magnesium and calcium soil as lime stone.

  • PDF

Flocculation Behavior and properties of Montmorillonites Mixed with Organic Polymer Solutions (유기폴리머 용액에 혼합한 몬모릴로나이트의 응집 거동 및 특징)

  • 황진영
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.307-315
    • /
    • 1999
  • Four organic polymers were mixed with mothmorillonite. Two cationic polymers a hi로 molecular weight polyacrylamide (494C) and a low molecular weight polymer (587C).Two anionic polymers include a high molecular weight polymer (aerotil). Each clay supension series were allowed to stand for 24 hours and were centrifuged, and the clay plugs were washed and dried. The dried samples investigated by XRD, IR and CEC measurement. The suspended clay containing anionic polymers was not flocculated at any concentratuons of polymer. But the suspendions containing two cationic polymers were rapidly flocculated at almost all concentrations. the d(001) spacings of Na-montmorillonite after being with cationic polymer 587C show about 15$\AA$ suggesting the polymers may have entered the interlayer spaces. The polymer 494C-treated sample produced double peaks of about 12 and 15$\AA$ in XRD. It indicates that the high molecular weight polymer. And cationic polymer 494C may be adsorbed mainy on the outside surface of clay, and some polymers may peretrate into olny interlayers in the margin of montmorillonite particles because of its high molecular weught. CEC of polumer 587-treated sample was reduecd mmarkedly suggesting polymer blocks CEC sites. The d(001) spacings of Ca-montmorillonite after being treated with cationic polymers show about 15$\AA$ suggesting that the interlayer spaces have not been expanded. In the experiment using a dilute Ca-bearing solution, the suspended caly containinf anionic polymers was flocculated. The results indicate that the flocculation behavior of montmorillonite-polymer supension depends on not only polymer properties such as concentration, electric charge and molecular weight but also compositions of solvent.

  • PDF