• Title/Summary/Keyword: CEB-FIP

Search Result 115, Processing Time 0.028 seconds

Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading

  • Esfandiari, Soheil;Esfandiari, Javad
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • In most cases strengthening reinforced concrete columns exposed to high strain rate is to be expected especially within weak designed structures. A special type of loading is instantaneous loading. Rapid loading can be observed in structural columns exposed to axial loads (e.g., caused by the weight of the upper floors during a vertical earthquake and loads caused by damage and collapse of upper floors and pillars of bridges).Subsequently, this study examines the behavior of reinforced concrete columns under rapid loading so as to understand patterns of failure mechanism, failure capacity and strain rate using finite element code. And examines the behavior of reinforced concrete columns at different support conditions and various loading rate, where the concrete columns were reinforced using various counts of FRP (Fiber Reinforcement Polymer) layers with different lengths. The results were compared against other experimental outcomes and the CEB-FIP formula code for considering the dynamic strength increasing factor for concrete materials. This study reveals that the finite element behavior and failure mode, where the results show that the bearing capacity increased with increasing the loading rate. CFRP layers increased the bearing capacity by 20% and also increased the strain capacity by 50% through confining the concrete.

Evaluation of the Crack Width of the Ultra High Performance Concrete(K-UHPC) Structures (초고성능 콘크리트(K-UHPC) 구조물의 균열폭 평가)

  • Kwahk, Imjong;Lee, Jungwoo;Kim, Jeesang;Joh, Changbin
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.99-108
    • /
    • 2012
  • Ultra High Performance Concrete(UHPC) has compressive strength higher than 180 MPa. The use of steel fibers in the dense UHPC matrix increases tensile strength, ductility and bond strength between UHPC and rebars. However, to apply the advance material behavior of UHPC to the design of a structure, we need design formulas. The crack formula is one of them. This paper investigated experimentally the bond behavior of a rebar and K-UHPC, the UHPC developed by Korea Institute of Construction Technology, and, modified CEB-FIP crack formula based on the test. In addition, this paper tested the crack behavior of K-UHPC reinforced with rebars to verify the modified crack formula. The result showed that the modified formula is reasonable to predict the width of cracks in the reinforced K-UHPC structures.

Instantaneous and time-dependent flexural cracking models of reinforced self-compacting concrete slabs with and without fibres

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.223-243
    • /
    • 2015
  • Self-compacting concrete (SCC) can be placed and compacted under its own weight with little or no compaction. It is cohesive enough to be handled without segregation or bleeding. Modifications in the mix design of SCC may significantly influence the material's mechanical properties. Therefore, it is vital to investigate whether all the assumed hypotheses about conventional concrete (CC) are also valid for SCC structures. The aim in this paper is to develop analytical models for flexural cracking that describe in appropriate detail the observed cracking behaviour of the reinforced concrete flexural one way slabs tested. The crack width and crack spacing calculation procedures outlined in five international codes, namely Eurocode 2 (1991), CEB-FIP (1990), ACI318-99 (1999), Eurocode 2 (2004), and fib-Model Code (2010), are presented and crack widths and crack spacing are accordingly calculated. Then, the results are compared with the proposed analytical models and the measured experimental values, and discussed in detail.

Experimental investigation of creep and shrinkage of reinforced concrete with influence of reinforcement ratio

  • Sun, Guojun;Xue, Suduo;Qu, Xiushu;Zhao, Yifeng
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • Predictions about shrinkage and creep of concrete are very important for evaluating time-dependent effects on structural performance. Some prediction models and formulas of concrete shrinkage and creep have been proposed with diversity. However, the influence of reinforcement ratio on shrinkage and creep of concrete has been ignored in most prediction models and formulas. In this paper, the concrete shrinkage and creep with different ratios of reinforcement were studied. Firstly, the shrinkage performance was tested by the 10 reinforced concrete beams specimens with different reinforcement ratios for 200 days. Meanwhile, the creep performance was tested by the 5 reinforced concrete beams specimens with different ratios of reinforcement under sustained load for 200 days. Then, the test results were compared with the prediction models and formulas of CEB-FIP 90, ACI 209, GL 2000 and JTG D 62-2004. At last, based on ACI 209, an improved prediction models and formulas of concrete shrinkage and creep considering reinforcement ratio was derived. The results from improved prediction models and formulas of concrete shrinkage and creep are in good agreement with the experimental results.

An Experimental Study on the Time-Dependent Deformation of the Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트의 시간의존적 변형에 관한 실험적 연구)

  • Lee, Young-Jun;Kwon, Eun-Hee;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.457-464
    • /
    • 2015
  • The alternative material for cement has been attracting attention in construction projects. Especially, the alkali activated slag(hereafter, AAS) concrete is able to use for a structural vertical member because of 40MPa of compressive strength, However, the research about time-dependent deformation such as creep which is important to strength member is insufficient. Therefore, in this study, experiments were performed with respect to time-dependent deformation including the drying shrinkage and creep deformation of AAS concrete. The creep deformed ratio of AAS concrete was more than OPC concrete by approximately 4.3% and the dry shrinkage deformation of AAS concrete was more than OPC concrete by approximately 69%. The large amount of sodium silicate, alkali activator, is added causing temperature crack than promoted drying and drying creep which is confirmed by water ration test and SEM.

Mechanical Properties of Energy Efficient Concretes Made with Binary, Ternary, and Quaternary Cementitious Blends of Fly Ash, Blast Furnace Slag, and Silica Fume

  • Kim, Jeong-Eun;Park, Wan-Shin;Jang, Young-Il;Kim, Sun-Woo;Kim, Sun-Woong;Nam, Yi-Hyun;Kim, Do-Gyeum;Rokugo, Keitetsu
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.97-108
    • /
    • 2016
  • When the energy performance of concrete is substantially higher than that of normal type concrete, such concrete is regarded as energy efficient concrete (WBSCSD 2009). An experimental study was conducted to investigate mechanical properties of energy efficient concrete with binary, ternary and quaternary admixture at different curing ages. Slump test for workability and air content test were performed on fresh concretes. Compressive strength, splitting tensile strength were made on hardened concrete specimens. The mechanical properties of concrete were compared with predicted values by ACI 363R-84 Code, NZS 3101-95 Code, CSA A23.3-94 Code, CEB-FIP Model, EN 1991, EC 2-02, AIJ Code, JSCE Code, and KCI Code. The use of silica fume increased the compressive strengths, splitting tensile strengths, modulus of elasticities and Poisson's ratios. On the other hand, the compressive strength and splitting tensile strength decreased with increasing fly ash.

Equivalent Shrinkage Strain For Steel-Concrete Composite Girder Bridges (합성거더교의 등가 건조수축 변형률)

  • Bae, DooByong;Jung, Dae Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.135-144
    • /
    • 2004
  • Since Modern bridges have a tendency to make the spans continuous and longer, the effect of concrete shrinkage and creep is very important and must be evaluated appropriately for the durability and safety of steel-concrete composite bridges. However, highway design specification in current use prescribes $180^{1\;2}$ as the final shrinkage strain. which is for less value than one resulted from many experimental researches and cause some problems in the construction of composite bridges due to the understimation of shrinkage strain. Thus, in this paper nonlinear analysis with time-steps applying the CEB-FIP(90) provision have been conducted for plate girder bridge, box girder bridge and Preflex beam bridge and the linear equivalent shrinkage strain for the design of composite bridges. which produces the stress equal to the values from the nonlinear analysis, has been calculated by comparing the results with the values following highway design specification. The results yield appropriately double values than $180^{1\;2}$ which highway design specification prescribes.

Analysis of Damage Levels with Bond Performance between Reinforcement and Recycled Coarse Aggregate Concrete (순환굵은골재 콘크리트와 이형철근의 부착거동시 손상단계 분석)

  • Lee, Min-Jung;Yun, Hyun-Do;JAng, Yong-Heon;Choi, Ki-Sun;You, Young-Chan;Lee, Do-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.863-866
    • /
    • 2008
  • One of the most important requirements for reinforced concrete constructions is the bond behavior between concrete and reinforcement. In this study, the positions (i.e., vertical, horizontal) and the locations (i.e., 225mm and 75mm) of reinforcement were considered as a main test parameter. The ready mixed recycled aggregate concrete concrete with specified strength of 21MPa was prepared with different replacement ratio(i.e 0%, 100%) of recycled coarse aggregate. From the test results, it was bond that under the same mix proportion (i.e., the mix proportions are the same, except for deformed bars position), the bond strength between the recycled coarse aggregate concrete and the reinforcement has obvious relation with reinforcement position. Also, the specimens of top position showed a lower bond stress than that provided in CEB-FIP Code.

  • PDF

Numerical modeling of the aging effects of RC shear walls strengthened by CFRP plates: A comparison of results from different "code type" models

  • Yeghnem, Redha;Guerroudj, Hicham Zakaria;Amar, Lemya Hanifi Hachemi;Meftah, Sid Ahmed;Benyoucef, Samir;Tounsi, Abdelouahed;Bedia, El Abbas Adda
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.579-588
    • /
    • 2017
  • Creep and shrinkage are the main types of volume change with time in concrete. These changes cause deflection, cracking and stresses that affect durability, serviceability, long-term reliability and structural integrity of civil engineering infrastructure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) plates, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by three commonly used international "code type" models. The assessed are the: CEB-FIP MC 90 model, ACI 209 model and Bazant & Baweja (B3) model. The time-dependent behavior was investigated to analyze their seismic behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to demonstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements and eigenfrequencies modes.

A Rheological Approach on the Predicting of Concrete Creep (유변학을 이용한 콘크리트 크리프 거동 예측)

  • Kwon, Ki-Yeon;Min, Kyung-Hwan;Kim, Yul-Hui;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.697-700
    • /
    • 2008
  • The object of this paper is to propose a logical prediction model of a concrete creep using rheology. Rheology is the study on the flow and stress relationship of matter under the influence of an applied stress. It is also estimated as an effective theory to describe concrete long-term deformations. According to a time dependency and a mechanism of occurrence, the proposed creep model was divided into four components, such as an elastic deformation, a long-term creep, a time dependent short-term creep and a time independent short-term creep. Evaluation on an actual creep deformation pattern by time passage confirmed these classification. In order to approve a rationality of the proposed model, most coefficients of each components were derived by the microprestresssolidification theory and design codes. Numerical approaches were also used when it was restricted within narrow limits. Finally, the proposed rheolgical model was verified by actual creep test results and compared with common methods.

  • PDF