• 제목/요약/키워드: CDH1

검색결과 56건 처리시간 0.022초

Rhodococcus sp. TK6가 생산하는 Cyclohexanol Dehydrogenase의 동위효소 (Cyclohexanol Dehydrogenase isozymes produced by Rhodococcus sp. TK6)

  • 김태강;이인구
    • 한국미생물·생명공학회지
    • /
    • 제27권2호
    • /
    • pp.124-128
    • /
    • 1999
  • TK6 was able to produce NAD+ dependent cyclohexanol dehydrogenase(CDH). The production of CDH was increased rapidly at the logarithmic phase and maintained constantly after that. In order to investigate the inductive production of CDH by various substrates, the bacteria were grown in the media containing alicyclic hydrocarbons and various alcohols as a sole crabon souce. CDH was induced most actively by cyclohexanol. Cyclohexanone and cyclohexane-1,2-diol also induced remarkable amount of CDH but it was induced weakly by 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 2-propanol, and 2-methyl-1-propanol. The dehydrogenase of the bacteria grown in the media containing cyclohexanol were weakly active for various alcohols, but the dehydrogenase activity for cyclohexane-1,2-diol was twice as much as that for cyclohexanol. Activity staining on PAGE of the cell free extract of Rhodococcus sp. TK6 grown in the media containing cyclohexanol reveals at least sever isozyme bands of CDH and we nominated the four major activity bands as CDH I, II, III, and IV. CDH I was strongly induced by cyclohexanol, cyclohexane-1,2-diok, but its activity was specific to cyclohexane-1,2-diol and 1-pentanol. CDH IV was strongly induced by cyclohexanol and cyclohexane-1,2-diol, and its activity was very specific to cyclohexane-1,2-diol.

  • PDF

Phanerochaete chrysosporium 변이주에서의 Cellobiose Dehydrogenase(CDH)와 $\beta$-Glucosidase 활성 향상 (Improvement of Cellobiose Dehydrogenase(CDH) and $\beta$-Glucosidase Activity by Phanerochaete chrysosporium Mutant)

  • 김은지;강성우;송광호;한성옥;김재진;김승욱
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.101-104
    • /
    • 2011
  • Hemoflavoenzyme으로서 cellobiose dehydrogenase(CDH)는 셀룰로오스를 분해하는 과정에서 세포 외부로 분비되는 효소로서 amorphous cellulose와 강하게 결합하여 셀룰라아제(cellulase)에 의해 microcrystalline cellulose의 가수분해를 증가시킨다. 따라서 CDH는 바이오 에탄올 생산의 당화공정에서 중요한 역할을 할 것으로 예상된다. 여러 백색부후균으로부터 CDH 생산이 높은 Phanerochaete chrysosporium ATCC 32629 균주를 선정하였으며, 균주로부터 생산된 CDH 효소활성의 최적 온도와 pH는 각각 ${55^{\circ}C}$와 4이었다. CDH 활성을 증가시키기 위하여 P. chrysosporium ATCC 32629 균주를 돌연변이시켰다. 돌연변이는 새로운 시도로써 국부적으로 큰 에너지를 줄 수 있는 특징을 가진 양성자 빔을 이용하였다. 양성자 빔 조사 후 사멸율이 약 99.9%인 1.2 kGy에서 CDH 활성이 증가된 변이주를 얻었다. 선별된 변이주와 모균주를 액체배양했을 때 변이주가 모균주보다 CDH와 $\beta$-glucosidase 활성이 각각 약 1.4배와 20배 증가하였다. 따라서, CDH 뿐만 아니라 $\beta$-glucosidase 활성이 높은 P. chrysosporium 변이주를 확보하였다.

Acinetobacter calcoaceticus C10에 의한 Cyclohexanol Dehydrogenase의 유도 (Induction of Cyclohexanol Dehydrogenase in Acinetobacter calcoaceticus C10)

  • 박희동;최선택;이인구
    • Applied Biological Chemistry
    • /
    • 제29권3호
    • /
    • pp.304-310
    • /
    • 1986
  • CL 배지에서 자란 A. calcoaceticus C10은 glucose dehydrogenase(GDH)와 cyclohexanol dehydrogenase(CDH)를 모두 생산하였다. A. calcoaceticus C10에 의한 사이클로헥사놀의 산화가 비특이적인 GDH에 의한 것인지를 알아보기 위하여 GDH와 CDH의 차이를 조사한 결과 GDH는 $NAD^+$$NADP^+$를 모두 조효소로 이 용하였으나 CDH는 $NAD^+$만을 조효소로 이용하였으며 $NADP^+$를 이용하지 못하였다. GDH는 LB 배지와 0.2%의 포도당 또는 사이클로헥사놀을 첨가한 LB 배지 및 CL 배지에서 모두 생산되었으나 CDH는 사이클로헥사놀을 첨가한 배지에서만 생산되었으며 7.5% polyacrylamide 젤 전기영동 결과 GDH와 CDH는 서로 다른 활성 밴드를 나타내었다. 이로써 GDH와 CDH는 서로 다른 것이며 사이클로헥사놀의 산화는 비특이적인 GDH에 의한 것이 아님을 확인하였다. LB 배지에서 A. calcoaceticus C10을 4시간 배양 후 사이클로헥사놀을 첨가할 경우 배양 24시간에 LB 배지에서보다 약 8배의 CDH 활성을 나타내었으며 생육도는 약 2배의 증가현상을 나타내었다. CDH는 사이클로헥사놀, 사이클로헥사논 cyclohexan-1,2-diol 및 cyclohexene oxide에 의해 유도되었으나 ${\varepsilon}-caprolactone$과 adipate에 의해서는 유도되지 않았다.

  • PDF

Methylation of RASSF1A and CDH13 Genes in Individualized Chemotherapy for Patients with Non-small Cell Lung Cancer

  • Zhai, Xu;Li, Shi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4925-4928
    • /
    • 2014
  • Background: This study aimed to evaluate the methylation of RASSF1A and CDH13 gene promoter regions as a marker for monitoring chemotherapeutic efficacy with personalized medicine for patients with NSCLC, in the hope of providing a new direction for NSCLC individualized chemotherapy. Materials and Methods: 42 NSCLC patients and 40 healthy controls were included. Patient blood samples were collected in the whole process of chemotherapy. Methylation of RASSF1A and CDH13 gene promoter regions was detected by the methylation specific polymerase chain reaction (MSP). Results: The rate of RASSF1A and CDH13 gene methylation in 42 cases of NSCLC patients was significantly higher than in 40 healthy controls (52.4% to 0.0%, 54.8% to 0.0%, p<0.05). After the chemotherapy, the hyper-methylation of RASSF1A and CDH13 genes in PR group and SD group decreased significantly (p<0.05), and was significantly different from that in PD group (p<0.05), but not as compared with healthy controls (P>0.05). With chemotherapy, RASSF1A and CDH13 promoter region methylation rate in 42 cases of patients showed a declining trend. Conclusions: The methylation level of RASSF1A and CDH13 gene promoter region can reflect drug sensitivity of tumors to individualized treatment.

구강 편평상피암종에서 CDH-13 유전자의 promoter methylation에 대한 연구 (PROMOTER METHYLATION OF THE CDH-13 GENE IN THE ORAL SQUAMOUS CELL CARCINOMA)

  • 이문주;한세진;김경욱
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권5호
    • /
    • pp.525-531
    • /
    • 2008
  • CDH-13(T-cadherin), which is one of a kind among the 20 cadherins, can be found mainly in wall of aorta, neuron, spleen, blood vessel etc. It is also called H-cadherin. This structural difference can explain that CDH-13 is thought to play a key role in maintaining mutual relation between extra and intra-cellular environment rather than in cell adhesion. The main function of CDH-13 is to participate in blood vessel function. Additionally, it is known to regulate cell growth and cell contact inhibition. When cells are proliferating, cell surface perceives other cells so that substance such as CDH-13 can inhibit their growth or proliferation resulting in homeostasis without endless proliferation or invasion of connective tissue boundaries. However, tumor cell itself appears to be different from normal cells' growth, invasion or transmission. Therefore, it can be diagnosed that these characteristics are closely related to expression of CDH-13 in tumor cells. This study is to investigate expression of CDH-13 in SCC and its correlation with promoter methylation. 20 of tissue species for the study are excised and gathered from 20 patients who are diagnosed as SCC in department of OMS, dental hospital, dankook university. To find development of CDH-13 in each tissue samples, immunohistochemical staining, RT-PCR gene analysis and methylation specific PCR are processed. The results are as follows. 1.Immunohistochemical staining: In normal oral squamous epithelial tissue, strong expression of CDH-13 was found in cell plasma membrane of basal cell layer. On the other hand, in case of low-differentiated oral SCC, development of CDH-13 was hardly seen. 2.The development of CDH-13 gene: In 9 of samples, expression of CDH-13 gene could be seen and 2 of them showed low expression compared to the others. And rest of the 11 samples showed no expression of CDH-13 gene. 3.Methylation of CDH-13 gene: Among 9 samples which expressed CDH-13 gene, 7 of them showed unmethylation. In addition, among 11 samples without CDH-13 gene expression, 10 showed methylation. According to the results stated above, promoter methylation were found in 13 samples(65%) among 20 of oral SCC samples. In low-differentiated SCC, suppression of gene expression could be seen accompanying promoter methylation. These phenomenon of gene expression was proved by immunohistochemical investigation. Finally, for development of oral SCC, conclusions can be made that suppression of CDH-13 played a main role and suppression of gene expression was originated from promoter methylation. Considering this, it is expected that suppression of CDH-13 from promoter methylation to be utilized as a good diagnostic marker of oral SCC.

정신분열병의 CDH2 유전자 다형성 (The CDH2 Gene Polymorphism in Schizophrenia)

  • 이원석;김미경;정한용;우성일;권영준;김종우;이희제
    • 생물정신의학
    • /
    • 제12권1호
    • /
    • pp.62-67
    • /
    • 2005
  • Objective:There has been increasing evidence that neurodevelopmental dysfunction is involved in the pathophysiology of schizophrenia. Cadherin is known to be one of the important molecules in neurodevelopment. This study was performed to examine the relationship between T816C polymorphism of CDH2 gene and schizophrenia. Methods:Genoytypes of T816C polymorphism of CDH2 gene were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 156 Korea patents with schizophrenia and 170 controls. Results:No difference was found between the patients with schizophrenia and the controls in genotype and allele frequencies of T816C polymorphism of CDH2 gene. Conclusion:The results of this study do not support an association between T816C polymorphism of CDH2 gene and schizophrenia. However, it is necessary to investigate other polymorphic regions of CDH2 in schizophrenia.

  • PDF

Purification and Characterization of a Cyclohexanol Dehydrogenase from Rhodococcus sp. TK6

  • Kim, Tae-Kang;Choi, Jun-Ho;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.39-45
    • /
    • 2002
  • Activity staining on the native polyacrylamide gel electrophoresis (PAGE) of a cell-free extract of Rhodococcus sp. TK6, grown in media containing alcohols as the carbon source, revealed at least seven isozyme bands, which were identified as alcohol dehydrogenases that oxidize cyclohexanol to cyclohexanone. Among the alcohol dehydrogenases, cyclohexanol dehydrogenase II (CDH II), which is the major enzyme involved in the oxidation of cyclohexanol, was purified to homogeneity. The molecular mass of the CDH II was determined to be 60 kDa by gel filtration, while the molecular mass of each subunit was estimated to be 28 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The CDH II was unstable in acidic and basic pHs, and rapidly inactivated at temperatures above $40^{\circ}C$ . The CDH II activity was enhanced by the addition of divalent metal ions, like $Ba^2+\;and\;Mg^{2+}$. The purified enzyme catalyzed the oxidation of a broad range of alcohols, including cyclohexanol, trans-cyclohexane-1,2-diol, trans-cyclopentane-l,2-diol, cyclopentanol, and hexane-1,2-diol. The $K_m$ values of the CDH II for cyclohexanol, trans-cyclohexane-l,2-diol, cyclopentanol, trans-cyclopentane-l,2-diol, and hexane-l,2-diol were 1.7, 2.8, 14.2, 13.7, and 13.5 mM, respectively. The CDH II would appear to be a major alcohol dehydrogenase for the oxidation of cyclohexanol. The N-terminal sequence of the CDH II was determined to be TVAHVTGAARGIGRA. Furthermore, based on a comparison of the determined sequence with other short chain alcohol dehydrogenases, the purified CDH II was suggested to be a new enzyme.

Novel mechanism of a CDH1 splicing mutation in a Korean patient with signet ring cell carcinoma

  • Kim, Sol-Lip;Ki, Chang-Seok;Kim, Kyoung-Mee;Lee, Myoung-Gun;Kim, Se-Hwa;Bae, Jae-Moon;Kim, Jong-Won
    • BMB Reports
    • /
    • 제44권11호
    • /
    • pp.725-729
    • /
    • 2011
  • We report a novel mechanism of a CDH1 splicing mutation in a patient with signet ring cell carcinoma of the stomach. A 27-year-old man complaining of aggravated dyspepsia was diagnosed with signet ring cell carcinoma. Both his father and uncle had died of stomach cancer at a young age. DNA sequencing analysis of the CDH1 gene revealed a splice site mutation (c.833-2A>G). By RNA/cDNA sequencing analysis, CDH1 c.833-2A>G generated a new acceptor site within intron 6, causing the insertion of a 79-bp intronic sequence between exon 6 and 7 (r.833-79_833-1ins), and resulting in a frame shift. E-cadherin immunohistochemical staining revealed a loss of CDH1 expression. This study reveals the disease-causing mechanism of this splicing mutation, and emphasizes the need for functional studies using RNA samples for the accurate interpretation of detected splicing variant. This is the first reported case of a CDH1 mutation in a Korean patient.

Loss of Expression and Aberrant Methylation of the CDH1 (E-cadherin) Gene in Breast Cancer Patients from Kashmir

  • Asiaf, Asia;Ahmad, Shiekh Tanveer;Aziz, Sheikh Aejaz;Malik, Ajaz Ahmad;Rasool, Zubaida;Masood, Akbar;Zargar, Mohammad Afzal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6397-6403
    • /
    • 2014
  • Background: Aberrant promoter hypermethylation has been recognized in human breast carcinogenesis as a frequent molecular alteration associated with the loss of expression of a number of key regulatory genes and may serve as a biomarker. The E-cadherin gene (CDH1), mapping at chromosome 16q22, is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. The aim of our study was to assess the methylation pattern of CDH1 and to correlate it with the expression of E-cadherin, clinicopathological parameters and hormone receptor status in breast cancer patients of Kashmir. Materials and Methods: Methylation specific PCR (MSP) was used to determine the methylation status of CDH1 in 128 invasive ductal carcinomas (IDCs) paired with the corresponding normal tissue samples. Immunohistochemistry was used to study the expression of E-cadherin, ER and PR. Results: CDH1 hypermethylation was detected in 57.8% of cases and 14.8% of normal adjacent controls. Reduced levels of E-cadherin protein were observed in 71.9% of our samples. Loss of E-cadherin expression was significantly associated with the CDH1 promoter region methylation (p<0.05, OR=3.48, CI: 1.55-7.79). Hypermethylation of CDH1 was significantly associated with age at diagnosis (p=0.030), tumor size (p=0.008), tumor grade (p=0.024) and rate of node positivity or metastasis (p=0.043). Conclusions: Our preliminary findings suggest that abnormal CDH1 methylation occurs in high frequencies in infiltrating breast cancers associated with a decrease in E-cadherin expression. We found significant differences in tumor-related CDH1 gene methylation patterns relevant to tumor grade, tumor size, nodal involvement and age at diagnosis of breast tumors, which could be extended in future to provide diagnostic and prognostic information.

Lack of Association between the CDH1 -160C>A Polymorphism and Risk of Gastrointestinal Cancer - a Meta-Analysis

  • Sahami-Fard, Mohammad Hossein;Yazd, Ehsan Farashahi;Khazaei, Zahra;Neamatzadeh, Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권5호
    • /
    • pp.2415-2421
    • /
    • 2016
  • E-cadherin (CDH1) genetic variations alter gene transcriptional activity of epithelial cells in vitro and may cause susceptibility to various cancers. Associations of CDH1 -160C>A polymorphism with various cancers have been widely reported. However, the results are controversial and inconsistent. To derive a more accurate estimation of the relationship, a meta-analysis was performed with regard to gastrointestinal (GI) cancer risk. Eligible studies were identified through a search of PubMed database until December 2015. Associations between the CDH1 -160C>A polymorphism and GI cancer risk was considered by odds ratios (ORs) together with their 95% confidence intervals (CIs). A total of 31 studies including 11,606 cases and 12,655 controls were involved in this meta-analysis. Overall, this meta-analysis showed no association between CDH1 -160C>A polymorphism and GI cancer risk (A vs. C: OR = 1.08, 95%CI = 0.98-1.18, P = 0.086;CA vs. CC: OR = 1.09, 95%CI = 0.97-1.22, P = 0.118; AA vs. CC: OR = 1.10, 95%CI = 0.89-1.35, P = 0.356; AA vs. CC + CA: OR = 1.06, 95%CI = 0.96-1.18, P = 0.207; CA+AA vs. CC: OR = 1.01, 95%CI = 0.84-1.22, P = 0.89). In subgroup analysis, similar results were found. In conclusion, this meta-analysis has demonstrated that there is a lack of association of the CDH1-160C>A polymorphism with GI cancer susceptibility.