• 제목/요약/키워드: CDC25A

검색결과 80건 처리시간 0.03초

Knock-down of human MutY homolog (hMYH) decreases phosphorylation of checkpoint kinase 1 (Chk1) induced by hydroxyurea and UV treatment

  • Hahm, Soo-Hyun;Park, Jong-Hwa;Ko, Sung-Il;Lee, You-Ri;Chung, In-Sik;Chung, Ji-Hyung;Kang, Lin-Woo;Han, Ye-Sun
    • BMB Reports
    • /
    • 제44권5호
    • /
    • pp.352-357
    • /
    • 2011
  • The effect of human MutY homolog (hMYH) on the activation of checkpoint proteins in response to hydroxyurea (HU) and ultraviolet (UV) treatment was investigated in hMYH-disrupted HEK293 cells. hMYH-disrupted cells decreased the phosphorylation of Chk1 upon HU or UV treatment and increased the phosphorylation of Cdk2 and the amount of Cdc25A, but not Cdc25C. In siMYH-transfected cells, the increased rate of phosphorylated Chk1 upon HU or UV treatment was lower than that in siGFP-transfected cells, meaning that hMYH was involved in the activation mechanism of Chk1 upon DNA damage. The phosphorylation of ataxia telangiectasia and Rad3-related protein (ATR) upon HU or UV treatment was decreased in hMYH-disrupted HEK293 and HaCaT cells. Co-immunoprecipitation experiments showed that hMYH was immunoprecipitated by anti-ATR. These results suggest that hMYH may interact with ATR and function as a mediator of Chk1 phosphorylation in response to DNA damage.

마우스의 대뇌조직에서 방사선에 의한 아포토시스와 세포주기의 조절 (Regulation of Apoptosis and Cell Cycle in Irradiated Mouse Brain)

  • 오원용;송미희;정은지;성진실;서창옥
    • Radiation Oncology Journal
    • /
    • 제19권2호
    • /
    • pp.146-152
    • /
    • 2001
  • 목적 : 마우스 대뇌조직에 방사선이 조사되었을 경우 아포토시스와 세포주기의 조절작용에 어떤 영향을 미치는 지를 연구하고자 하였다. 대상 및 방법 : 8주간 성숙된 C57B1/6J 마우스의 전뇌에 코발트 방사선조사기로 25 Gy의 방사선을 단일 조사하였다. 방사선조사후 1, 2, 4, 8, 24시간 간격으로 마우스를 경추 탈구사시킨 후 뇌조직을 채취하였다. 채취한 뇌조직을 TUNEL 분석법에 의하며 아포토시스 유도 수준을 평가하였으며 Western blotting법을 이용하여 유전자 산물인 p53, Bcl-2, Bax 그리고 세포주기 조절인자인 cyclin Bl, Dl, E, cdk2, cdk4, $p34^{cdc2}$를 분석하였다. 세포주기의 변화는 유세포분석법에 의하여 분석되었다. 결과 : 아포토시스는 방사선조사후 8시간에서 최고치를 보였고 아포토시스 지수는 $24.0{\pm}0.25$ (p<0.05)였다. 세포주기에서 조절인자의 변화는 cyclin D1를 제외하고는 특이하지 않았다. 결론 : 마우스의 전뇌에 방사선을 조사한 결과 아포토시스는 대뇌의 상의하(subependyma)에서 주로 일어났으며 세포주기의 조절인자에는 영향을 미치지 않는 것으로 판명되었다.

  • PDF

Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition

  • Ritto, Dakanda;Tanasawet, Supita;Singkhorn, Sawana;Klaypradit, Wanwimol;Hutamekalin, Pilaiwanwadee;Tipmanee, Varomyalin;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • 제11권4호
    • /
    • pp.275-280
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Re-epithelialization has an important role in skin wound healing. Astaxanthin (ASX), a carotenoid found in crustaceans including shrimp, crab, and salmon, has been widely used for skin protection. Therefore, we investigated the effects of ASX on proliferation and migration of human skin keratinocyte cells and explored the mechanism associated with that migration. MATERIAL/METHOD: HaCaT keratinocyte cells were exposed to $0.25-1{\mu}g/mL$ of ASX. Proliferation of keratinocytes was analyzed by using MTT assays and flow cytometry. Keratinocyte migration was determined by using a scratch wound-healing assay. A mechanism for regulation of migration was explored via immunocytochemistry and western blot analysis. RESULTS: Our results suggest that ASX produces no significant toxicity in human keratinocyte cells. Cell-cycle analysis on ASX-treated keratinocytes demonstrated a significant increase in keratinocyte cell proliferation at the S phase. In addition, ASX increased keratinocyte motility across the wound space in a time-dependent manner. The mechanism by which ASX increased keratinocyte migration was associated with induction of filopodia and formation of lamellipodia, as well as with increased Cdc42 and Rac1 activation and decreased RhoA activation. CONCLUSIONS: ASX stimulates the migration of keratinocytes through Cdc42, Rac1 activation and RhoA inhibition. ASX has a positive role in the re-epithelialization of wounds. Our results may encourage further in vivo and clinical study into the development of ASX as a potential agent for wound repair.

맥문동이 LPS로 유도된 폐손상에 미치는 영향 (Effects of Root of Liriope Spicata on LPS-induced Lung Injury)

  • 이응석;양수영;김민희;남궁욱;박양춘
    • 동의생리병리학회지
    • /
    • 제25권4호
    • /
    • pp.641-649
    • /
    • 2011
  • This study was purposed to evaluate the effects of root of Liriope spicata (RLS) on LPS-induced COPD (chronic obstructive pulmonary disease) model. The extract of RLS was treated to A549 cells and LPS-induced COPD mice model. Then, various parameters such as cell-based cyto-protective activity and histopathological finding were analyzed. RLS showed a protective effect on LPS-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, protein level of cyclin B1, Cdc2, and phospho-Erk1/2, and gene expression of TNF-${\alpha}$ and IL-$1{\beta}$ in A549 cells. RLS treatment also revealed the protective effect on LPS-induced lung injury in COPD mice model. This effect was evidenced via histopathological finding including immunofluence stains against caspase 3, and protein level of cyclin B1, Cdc2, and Erk1/2 in lung tissue. These data suggest that RLS has a pharmaceutical properties on lung injury. This study would provide an scientific evidence for the efficacy of RLS for clinical application to patients with COPD.

Silencing of NUF2 Inhibits Tumor Growth and Induces Apoptosis in Human Hepatocellular Carcinomas

  • Liu, Qiang;Dai, She-Jiao;Li, Hong;Dong, Lei;Peng, Yu-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8623-8629
    • /
    • 2014
  • Background: As an important component of the NDC80 kinetochore complex, NUF2 is essential for kinetochore-microtubule attachment and chromosome segregation. Previous studies also suggested its involvement in development of various kinds of human cancers, however, its expression and functions in human hepatocellular carcinoma (HCC) are still unclear. Materials and Methods: In the present study, we aimed to test the hypothesis that NUF2 is aberrant in human HCCs and associated with cell growth. Results: Our results showed significantly elevated expression of NUF2 in human HCC tissues compared to adjacent normal tissues, and high expression of NUF2 in HCC cell lines. Using lentivirus-mediated silencing of NUF2 in HepG2 human HCC cells, we found that NUF2 depletion markedly suppressed proliferation and colony formation capacity in vitro, and dramatically hampered tumor growth of xenografts in vivo. Moreover, NUF2 silencing could induce cell cycle arrest and trigger cell apoptosis. Additionally, altered levels of cell cycle and apoptosis related proteins including cyclin B1, Cdc25A, Cdc2, Bad and Bax were also observed. Conclusions: In conclusion, these results demonstrate that NUF2 plays a critical role in the regulation of HCC cell proliferation and apoptosis, indicating that NUF2 may serve as a potential molecular target for therapeutic approaches.

Paclitaxel에 의한 관절연골 세포의 capase-비의존적 mitotic catastrophe 유도 (Paclitaxel Induced Caspase-Independent Mitotic Catastrophe in Rabbit Articular Chondrocyte)

  • 임정희;김송자
    • 생명과학회지
    • /
    • 제20권4호
    • /
    • pp.519-527
    • /
    • 2010
  • Paclitaxel은 미세소관의 탈중합을 억제하는 시약으로 알려져 있다. Paclitaxel은 다양한 세포에서 세포 내 방추체를 안정화시킴으로써 유사분열 억제 및 세포사멸을 유도한다. 본 실험에서는 토끼 관절 연골세포에서 paclitaxel이 연골세포의 증식과 사멸에 미치는 효과에 대한 연구를 수행하였다. MTT assay를 수행한 결과 paclitaxel은 연골세포에서 농도 의존적으로 세포 증식을 억제한다는 것을 확인 할 수 있었으며, FACS analysis와 Western blot analysis를 수행한 결과, paclitaxel이 G2/M 정지를 유도하는 것을 확인하였다. 또한, paclitaxel이 비정상적인 세포 분열유도와 핵 단편분절 유도없이 일어나는 mitotic catastrophe 즉, caspase-3 비의존적인 세포사멸을 유도하였다. Paclitaxel을 처리한 세포에서 일어나는 이러한 mitotic catastrophe에 의한 세포 죽음은 G1/S기의 진행을 억제하는 시약인 thymidine을 처리하는 것에 의해 억제되는 것을 확인할 수 있었다. 이러한 결과를 종합해 볼 때, paclitaxel에 의한 토끼 관절 연골 세포에서의 세포 죽음은 caspase-3 비의존적인 mitotic catastrophe에 의해 일어나는 것으로 사료되어진다.

Depletion of the Pre-RC Proteins Induces Chk1/Chk2 Independent Checkpoint Responses and Apoptotic Cell Death in HeLa Cells

  • Im, Jun-Sub;Lee, Joon-Kyu
    • Animal cells and systems
    • /
    • 제11권2호
    • /
    • pp.129-134
    • /
    • 2007
  • The initiation of eukaryotic DNA replication requires assembly of the pre-replicative complex (Pre-RC) through the concerted action of Orc, Cdc6, Cdt1 and Mcm2-7 complex during G1 phase. The pre-RC assembly licenses individual replication origins for the initiation of DNA replication and sufficient number of the pre-RC is essential for proper progression of S phase. However, it is not well known how cells recognize the completion of the pre-RC assembly before G1-S transition. In order to understand the cellular responses to the defects in pre-RC assembly, we depleted the known components of pre-RC proteins using the small interference RNAs in HeLa cells. Although the defects of pre-RC assembly by the depletion of the pre-RC proteins such as Orc2, Cdt1, Mcm2 & Mcm10 did not elicit the activation of Chk1- or Chk2-dependent checkpoint pathways, these cells still showed significant decrease in the cellular level of Cdc25A proteins. These results suggests that a novel checkpoint pathway exist in HeLa cells, which is not dependent upon Chk1 or Chk2 proteins and play essential roles in the cellular responses to the defects in the pre-RC assembly. Also, among those four proteins tested in this study, the depletion of Mcm10 and Cdt1 proteins significantly increased the apoptotic cell death in HeLa cells, suggesting that these proteins not only play roles in the pre-RC assembly, but also are involved in the checkpoint responses to the defects in the pre-RC assembly.

PP2A function toward mitotic kinases and substrates during the cell cycle

  • Jeong, Ae Lee;Yang, Young
    • BMB Reports
    • /
    • 제46권6호
    • /
    • pp.289-294
    • /
    • 2013
  • To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation.

인체 방광암 및 백혈병세포에서 genistein에 의한 세포주기 G2/M arrest 유발에 관한 연구 (Induction of G2/M Arrest of the Cell Cycle by Genistein in Human Bladder Carcinoma and Leukemic Cells)

  • 김의겸;명유호;송관성;이기홍;류충호;최영현
    • 생명과학회지
    • /
    • 제16권4호
    • /
    • pp.589-597
    • /
    • 2006
  • 본 연구에서는 T24 인체방광암 및 U937 백혈병 세포의 증식에 미치는 genistein의 영향을 조사 하였다. Genistein이 처리된 T24 및 U937 세포는 처리 농도 의존적으로 세포의 증식이 현저히 감소되었으며 심한 형태적 변형이 동반되었으나, U937 세포에서 보다 높은 감수성을 보였다. 이러한 T24 및 U937 세포의 증식억제 및 형태 변형은 G2/M기의 세포주기 억제 및 apoptosis 유발과 연관성이 있음을 flow cytometry를 이용한 세포주기의 분석을 통하여 확인하였다. T24 세포에서 genistein에 의한 G2/M arrest는 cyclin A, cyclin B1 및 Cdc25C 등의 단백질 발현 감소와 연관성이 있었으나, 종양억제 유전자 p53 및 Cdk inhibitor p21의 발현에는 큰 변화가 없었다. U937 세포에서 genistein에 의한 G2/M arrest는 cyclin B1 및 p53 비의존적인 p21의 발현 증가와 연관성이 있었다. 이상의 결과들은 현재까지 거의 연구가 진행된 바 없는 인체방광암 및 백혈병 세포에서 genistein의 항암작용을 이해하는데 중요한 자료가 될 것이고 나아가 genistein을 포함한 그와 유사한 항암제 후보물질들의 연구에 있어서 기초 자료로서 사용될 수 있을 것으로 생각된다.

Schedule-Dependent Effects of Kappa-Selenocarrageenan in Combination with Epirubicin on Hepatocellular Carcinoma

  • Ji, Yu-Bin;Ling, Na;Zhou, Xiao-Jun;Mao, Yun-Xiang;Li, Wen-Lan;Chen, Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3651-3657
    • /
    • 2014
  • Hepatocellular carcinoma (HCC) has a relatively higher incidence in many countries of Asia. Globally, HCC has a high fatality rate and short survival. Epirubicin, a doxorubicin analogue, may be administered alone or in combination with other agents to treat primary liver cancer and metastatic diseases. However, the toxic effects of epirubicin to normal tissues and cells have been one of the major obstacles to successful cancer chemotherapy. Here, we investigated the effects of epirubicin in combination with kappa-selenocarrageenan on mice with H22 implanted tumors and HepG-2 cell proliferation, immune organ index, morphology, cell cycle and related protein expressions in vivo and in vitro with sequential drug exposure. The inhibitory rate of tumor growth in vivo was calculated. Drug sensitivity was measured by MTT assay, and the King's principle was used to evaluate the interaction of drug combination. Morphological changes were observed by fluorescent microscopy. Cell cycle changes were analyzed by flow cytometry. Expression of cyclin A, Cdc25A and Cdk2 were detected by Western blotting. In vivo results demonstrated that the inhibitory rate of EPI combined with KSC was higher than that of KSC or EPI alone, and the Q value indicated an additive effect. In addition, KSC could significantly raise the thymus and spleen indices of mice with H22 implanted tumors. In the drug sensitivity assay in vitro, exposure to KSC and EPI simultaneously was more effective than exposure sequentially in HepG-2 cells, while exposure to KSC prior to EPI was more effective than exposure to EPI prior to KSC. Q values showed an additive effect in the simultaneous group and antagonistic effects in the sequential groups. Morphological analysis showed similar results to the drug sensitivity assay. Cell cycle analysis revealed that exposure to KSC or EPI alone arrested the cells in S phase in HepG-2 cells, exposure to KSC and EPI simultaneously caused accumulation in the S phase, an effect caused by either KSC or EPI. Expression of cyclin A, Cdc25A and Cdk2 protein was down-regulated following exposure to KSC and EPI alone or in combination, exposure to KSC and EPI simultaneously resulting in the lowest values. Taken together, our findings suggest that KSC in combination with EPI might have potential as a new therapeutic regimen against HCC.