• Title/Summary/Keyword: CD226

Search Result 38, Processing Time 0.026 seconds

Association of the CD226 Genetic Polymorphisms with Risk of Tuberculosis

  • Jin, Hyun-Seok;Park, Sangjung
    • Biomedical Science Letters
    • /
    • v.23 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • Tuberculosis (TB), mainly disseminated by infection of the respiratory tract, remains an unsolved community health problem by Mycobacterium tuberculosis (MTB). However, because of the different susceptibility to MTB, people infected with MTB do not all develop TB. These differences of disease arise from individual genetic susceptibility as well as the property of the microorganisms itself. CD226, one of the genetic factors that influences TB, interact with its ligand PVR and ITGB2. It is induced various cellular responses that contribute multiple innate and adaptive responses. In a previous study, CD226 enhanced immune efficacy induced by Ag85A DNA vaccination that is secreted protein by MTB. The aim of this study was to investigate the association between six genetic polymorphisms of CD226 gene and TB status with Korean population. Our results show that two SNPs of CD226 were identified to associate with tuberculosis. The highest significant SNP was rs17081766 (OR=0.70, CI: 0.54~0.90, $P=5.4{\times}10^{-3}$). According to this study, polymorphisms of CD226 gene affect the outbreak of TB in MTB-infected patients. It is suggested that polymorphism of other genes also associated with immune responses results in susceptibility to TB. The results from this study suggest that not only the characteristics of the microorganism itself but also the genetic background of the individual may affect progression of TB in MTB-infected patients.

Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy

  • Jin, Hyung-seung;Park, Yoon
    • BMB Reports
    • /
    • v.54 no.1
    • /
    • pp.2-11
    • /
    • 2021
  • Antibody-based therapeutics targeting the inhibitory receptors PD-1, PD-L1, or CTLA-4 have shown remarkable clinical progress on several cancers. However, most patients do not benefit from these therapies. Thus, many efforts are being made to identify new immune checkpoint receptor-ligand pathways that are alternative targets for cancer immunotherapies. Nectin and nectin-like molecules are widely expressed on several types of tumor cells and play regulatory roles in T- and NK-cell functions. TIGIT, CD226, CD96 and CD112R on lymphoid cells are a group of immunoglobulin superfamily receptors that interact with Nectin and nectin-like molecules with different affinities. These receptors transmit activating or inhibitory signals upon binding their cognate ligands to the immune cells. The integrated signals formed by their complex interactions contribute to regulating immune-cell functions. Several clinical trials are currently evaluating the efficacy of anti-TIGIT and anti-CD112R blockades for treating patients with solid tumors. However, many questions still need to be answered in order to fully understand the dynamics and functions of these receptor networks. This review addresses the rationale behind targeting TIGIT, CD226, CD96, and CD112R to regulate T- and NK-cell functions and discusses their potential application in cancer immunotherapy.

Application of Practical Immobilizing Agents for Declining Heavy Metal (loid)s Accumulation by Agricultural Crop (Allium wakegi Araki)

  • Seo, Byoung-Hwan;Kim, Hyun-Uk;Lwin, Chaw Su;Kim, Hyuck Soo;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.226-234
    • /
    • 2017
  • In order to reduce the accumulation of toxic metals (As, Cd and Pb) in the chives, various immobilizing agents such as a soil pH change-inducing immobilizing agent (lime), sorption agent (compost, spent mushroom compost), soil pH change and sorption agent (biochar) and, dissolved organic carbon (DOC) coagulator (gypsum) and uncontaminated soil were applied to the contaminated soils in isolation and in combination. Then chives were grown and determined for As, Cd and Pb concentrations accumulated in the edible part at harvest. The Cd and Pb concentrations of the chive plant grown in the contaminated soil (no treatment) exceeded the legislated Korean guideline values (Cd: $0.05mg\;kg^{-1}$, Pb $0.1mg\;kg^{-1}$) and As concentration ($21mg\;kg^{-1}$) was 1,000 times higher than chives plant grown in uncontaminated environment in Korea. Application of lime and gypsum significantly reduced As, Cd and Pb concentrations in all chives examined, due to the increased soil pH and decreased soil DOC. Also, application of combination treatments involving DOC coagulator such as gypsum together with lime decreased As, Cd and Pb concentrations from 21, 1.3 and $9.7mg\;kg^{-1}$ to 2.1, 0.1 and $1.1mg\;kg^{-1}$, respectively. Consequently, it was concluded that pH change-inducing immobilizing agent (lime) which was already well known and DOC coagulator such as gypsum could be used as a promising immobilizing agent for safer chives plant production.

Biosorption of Metal Ions by Seaweed Alginate, Polyguluronate, and Polymannuronate (알긴산, 폴리글루론산 및 폴리만뉴론산에 의한 금속이온의 흡착)

  • Jung, Dae-Young;Son, Chang-Woo;Kim, Sung-Koo;Kim, Yi-Joon;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.553-560
    • /
    • 2009
  • Based on $P_{1/2}$ values, relative affinities of alginate, polyguluronate, and polymannuronate for metal ions are, in order, as follows; 1) seaweed alginate: $Cu^{2+}$ > $Cd^{2+}$ > $Pb^{2+}$ > $Fe^{3+}$ >> $Zn^{2+}$ > $Sr^{2+}$ > $Ca^{2+}$ > $Co^{2+}$ >> $Cr^{6+}$ > $Mn^{2+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$, 2) polyguluronate: $Cd^{2+}$ > $Cu^{2+}$ > $Pb^{2+}$ > $Fe^{3+}$ >> $Ca^{2+}$ > $Sr^{2+}$, $Zn^{2+}$, $Co^{2+}$ >> $Mn^{2+}$ > $Cr^{6+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$, and 3) polymannuronate: $Cd^{2+}$, $Cu^{2+}$ > $Fe^{3+}$ > $Pb^{2+}$ > $Ca^{2+}$ > $Zn^{2+}$ > $Sr^{2+}$ > $Co^{2+}$ > $Cr^{6+}$ >> $Mn^{2+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$. Amounts of the metal ions, $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, and $Zn^{2+}$, bound to 1 g of seaweed alginate, were measured as $363.5{\pm}45.0$, $226.3{\pm}9.2$, $1,299.4{\pm}$81.3, 500.7${\pm}$27.7, and 165.9${\pm}$11.4 mg, respectively. Amounts of the metal ions, $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, and $Zn^{2+}$, bound to 1g of polyguluronate, were 354.5${\pm}$26.5, 177.6${\pm}$8.7, 1,288.6${\pm}$60.1, 424.0${\pm}$7.4, and 140.2${\pm}$28.5 mg, respectively, whereas those bound to 1 g of polymannuronate were 329.0${\pm}$10.3, 206.9${\pm}$1.9, 1,635.6${\pm}$11.1, 419.8${\pm}$12.6, and 251.0${\pm}$49.1 mg, respectively. Due to its higher solubility than alginate and higher affinity for metal ions than polyguluronate, polymannuronate can be used for bioremediation or biosorption of toxic and/or noble metal ions.

A Effect of Heavy Metal to Toxicity of Triclosan Focused on Vibrio fischeri Assay (Triclosan의 독성에 중금속이 미치는 영향 - V. fischeri Assay 관련 내용 중심으로 -)

  • Kim, Ji-Sung;Kim, Il-Ho;Lee, Woo-Mi;Lee, Hye-In;Kim, Seok-Gu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.3
    • /
    • pp.153-161
    • /
    • 2014
  • The purpose of this study is to evaluate effect of heavy metals (i.e., $Cu^{2+}$, $Zn^{2+}$, $Cr^{6+}$, $Cd^{2+}$, $Hg^{2+}$, and $Pb^{2+}$) to toxicity of Triclosan as binary mixture. The individual toxicity and combined toxic effects of Triclosan with heavy metals were evaluated by Vibrio fischeri assay. In individual toxicity, the $Hg^{2+}$ was found to be most toxic followed by Triclosan, $Pb^{2+}$, $Cr^{6+}$, $Cu^{2+}$, $Zn^{2+}$, and $Cd^{2+}$, respectively. To evaluate combined toxic effect, correlation analysis of 'predicted value' calculated by Concentration addition (CA) model and Independent action (IA) model with 'experimental value' were performed based on the toxicity of individual compound. As a result, all of the combinations showed that IA model were more correlated with experimental value than CA model. On the basis of the median effect concentration of combination ($EC_{50mix}$) predicted by IA model, experimental $EC_{50mix}$ of Triclosan + Cu, Triclosan + Zn, Triclosan + Pb, Triclosan + Hg, Triclosan + Cd, and Triclosan + Cr were 191%, 226%, 138%, 137%, 209%, and 138% of $EC_{50mix}$ predicted by IA model, respectively, indicating that all of the combinations produced antagonistic effect.

Key Structural Features of PigCD45RO as an Essential Regulator of T-cell Antigen Receptor Signaling (T-세포 항원 수용체 매개 신호전달 조절자로서 돼지 CD45RO 구조특성)

  • Chai, Han-Ha;Lim, Dajeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.211-226
    • /
    • 2019
  • Pig CD45, the leukocyte common antigen, is encoded by the PTPRC gene and CD45 is a T cell-type specific tyrosine phosphatase with alternative splicing of its exons. The CD45 is a coordinated regulator of T cell antigen receptor (TCR) signal transduction achieved by dephosphorylating the phosphotyrosine of its substances, including $CD3{\zeta}$ chain of TCR, Lck, Fyn, and Zap-70 kinase. A dysregulation of CD45 is associated with a multitude of immune disease and has been a target for immuno-drug discovery. To characterize its key structural features with the effects of regulating TCR signaling, this study predicted the unknown structure of pig CD45RO (the smallest isoform) and the complex structure bound to the ITAM (REEpYDV) of $CD3{\zeta}$ chain via homology modeling and docking the peptide, based on the known human CD45 structures. These features were integrated into the structural plasticity of extracellular domains and functional KNRY and PTP signature motifs (the role of a narrow entrance into ITAM binding site) of the tyrosine phosphatase domains in a cytoplasmic region from pig CD45RO. This contributes to the selective recognition of phosphotyrosine from its substrates by adjusting the structural stability and binding affinity of the complex. The characterized features of pigCD45RO can be applied in virtual screening of the T-cell specific immunomodulator.

Apo-1/Fas (CD95) Gene Polymorphism in Korean Knee Osteoarthritis Patients (한국인 무릎 골 관절염 환자들의 임상 양상과 Apo-1/Fas (CD95) 유전자 다형성과의 상관관계에 관한 연구)

  • Hong, Seung-Jae;Yang, Hyung-In;Yim, Sung-Vin;Chung, Joo-Ho;Jung, Young-Ok;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.2
    • /
    • pp.145-149
    • /
    • 2003
  • Background: Apoptosis has been implicated in pathogenesis of various disease. Apo-1/Fas (CD95) is one of the main pathway of apoptosis. To examine the possible relationship between Apo-1/Fas (CD95) and primary knee osteoarthritis, MvaI restriction length polymorphism (RFLP) in human Apo-1/Fas (CD95) gene was assessed. Methods: Genotype and allele frequencies in promoter region in the Apo-1/Fas (CD95) gene were studied by PCR-RFLP in 226 Korean controls and 148 Korean patients with primary knee osteoarthritis. Results: No statistically significant difference in the genotypic distribution and allelic frequencies was found between the control and the knee oateoarthritis patients. But in the severe grade (grade 3, 4) Kellgren-Lawrence score patients, the frequency of $MvaI^*1$ (G) allele was significantly decreased (P=0.0392) and the of $MvaI^*2$ (A) allele frequency was significantly increased (P=0.0473) compared to the normal controls. Conclusion: Apo-1/Fas (CD95) gene polymorphism is a part a determinant factor of severity in knee osteoarthritis, the patients with $MvaI^*2$ (A) allele is more severe radiologic progression. Further substantiation studies are needed in larger patient samples and various other apoptosis related genes to elucidate the mechanism of osteoarthritis, including the Fas ligand gene analysis.

The Distribution Characteristics of Heavy Metals in the Water, Sediment and Soil along the West Nakdong River (서낙동강 유역의 강물, 저토 및 토양의 중금속 분포 특성)

  • Park, Heung-Jai;Park, Jong-Kil;Park, Won-Su
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.409-416
    • /
    • 1994
  • This study was Performed to evaluate the contents of heavy metals in water, sediment and soil of the 7 different sampling points along the West Nakdong river, The results were as follows: the concentrations of Zn, p, Pb, Cd, Mn, Cu and As in the sediment were 197.48, 551.85, 67.01, 2.54, 491.39, 42.95 and 10.52ppm, respectively. The concentrations of Zn, p, Pb, Cd, Mn, Cu and As in the soil was 83.32, 482.89, 17.15, 1.02, 226.02, 26.15 and 7.29ppm, respectively. The concentration ratios of heavy metals In the water to the sediment were 593 - 12700 (Cd >> Cu > Zn > Mn > As > Pb) and that of the water to the soil were 152 - 5100 (Cu > Cd > Zn > Mn > As >Pb). The correlation coefficients of Cu and Pb weve high among the water, sediment and soil. Because the accumulation amounts of heavy metal in the sediment were high, the concentration of heavy metals in the sediment was higher than in soil. The correlation coefficient of heavy metals among water, sediment and soil was high (0.79 - 0.95). Key Words Distribution Characteristics, heavy metals, West Nakdong River.

  • PDF

The Effect of The Heat Treatment Condition and the Oxidation Process on the Microstructure of Ag-CdO Contact Materials (Ag-CdO계 전기접점재료의 미세조직에 미치는 열처리 조건과 산화 공정의 영향)

  • Kwon, Gi-Bong;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.226-232
    • /
    • 2005
  • Contact material is widely used in the field of electrical parts. Ag-CdO material has a good wear resistance and stable contact resistance. In order to establish optimizing heat treatment condition, rolling temperature and oxidation process, we studied the microstructure of Ag-CdO material with various conditions. The experimental procedure were melting using high frequency induction, heat treatment, rolling and internal oxidation. And we experimented on difference process, Post-oxidaion. In this study, we obtained the optimizing heat treatment condition was $700^{\circ}C$ for 15 min. and the optimizing rolling temperature was $730^{\circ}C$. In investigation of the microstructure of oxidized material, coarse oxide and depleted oxidation layer existed. The hardness was average Hv 70. When we used Post-oxidation, oxides were finer than prior process and depleted oxidation layer did not exist. The hardness of Post-oxidation material was average Hv 80. And the optimizing rolling temperature was $800^{\circ}C$.

Triglyceride Regulates the Expression of M1 and M2 Macrophage-specific Markers in THP-1 Monocytes

  • Kim, Hyun-Kyung;Kim, Sung Hoon;Kang, Yeo Wool;Kim, Bohee;Rhee, Ki-Jong;Kim, Yoon Suk
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.220-226
    • /
    • 2016
  • Hypertriglyceridemia induces atherosclerosis and accordingly is a major causative factor in cardiovascular diseases. Macrophages that develop into foam cells are a crucial component in the development of atherosclerosis. Monocytes can be differentiated into M1 or M2 macrophages. M1 macrophages promote inflammatory responses, whereas M2 macrophages exhibit anti-inflammatory activity. Recently, we found that triglyceride (TG)-treated THP-1 monocytes express a variety of macrophage-specific surface markers, indicating that TG treatment could trigger the differentiation of monocytes into macrophages. In this study, we investigated whether TG-induced macrophages express the M1 or the M2 macrophage phenotype. THP-1 cells were treated with various concentrations of TG for different times and the expression of M1- and M2-specific markers was evaluated by RT-PCR. We found increased expression of M1 markers (CD40, CD80, and CD86) in TG-treated THP-1 cells in a TG dose- and time-dependent manner. The expression of M2 markers (CD163, CD200R, and CD206) showed variable responses to TG treatment. Taken together, our results indicate that TG treatment triggers the differentiation of monocytes into M1 macrophages, rather than into M2 macrophages, suggesting that TG contributes to pro-inflammatory responses.