• Title/Summary/Keyword: CD10

Search Result 5,219, Processing Time 0.031 seconds

Cooperation between Human DAF and CD59 in Protecting Cells from Human Complement-mediated Lysis

  • Xu, Li;Wu, Wenlan;Zhao, Zhouzhou;Shao, Huanjie;Liu, Wanhong;Liu, Hui;Li, Wenxin
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.743-748
    • /
    • 2006
  • The complement (C) regulatory proteins decay accelerating factor (DAF, CD55) and CD59 could protect host cells using different mechanisms from C-mediated damage at two distinct levels within the C pathway. Co-expression of DAF and CD59 would be an effective strategy to help overcome host C-induced xenograft hyperacute rejection. In this study, we made a construct of recombinant expression vector containing DAF and CD59 cDNA and the stable cell lines were obtained by G418 selection. Extraneous genes integration and co-expression were identified by PCR, RT-PCR and Western blot analysis. Human c-mediated cytolysis assays showed that NIH/3T3 cells transfected stably with pcDNA3-CD59, pcDNA3-DAF, and pcDNA3-CD59DAF-DP were protected from C-mediated damage and that synchronously expressed human CD59 and DAF provided the most excellent protection for host cells as compared with either human CD59 or DAF expressed alone. Therefore, the construct represents an effective and efficacy strategy to overcome C-mediated damage in cells and, ultimately, in animals.

Gardenia jasminoides extract and its constituent, genipin, inhibit activation of CD3/CD28 co-stimulated CD4+ T cells via ORAI1 channel

  • Kim, Hyun Jong;Nam, Yu Ran;Woo, JooHan;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.4
    • /
    • pp.363-372
    • /
    • 2020
  • Gardenia jasminoides (GJ) is a widely used herbal medicine with anti-inflammatory properties, but its effects on the ORAI1 channel, which is important in generating intracellular calcium signaling for T cell activation, remain unknown. In this study, we investigated whether 70% ethanolic GJ extract (GJEtOH) and its subsequent fractions inhibit ORAI1 and determined which constituents contributed to this effect. Whole-cell patch clamp analysis revealed that GJEtOH (64.7% ± 3.83% inhibition at 0.1 mg/ml) and all its fractions showed inhibitory effects on the ORAI1 channel. Among the GJ fractions, the hexane fraction (GJHEX, 66.8% ± 9.95% at 0.1 mg/ml) had the most potent inhibitory effects in hORAI1-hSTIM1 co-transfected HEK293T cells. Chemical constituent analysis revealed that the strong ORAI1 inhibitory effect of GJHEX was due to linoleic acid, and in other fractions, we found that genipin inhibited ORAI1. Genipin significantly inhibited IORAI1 and interleukin-2 production in CD3/CD28-stimulated Jurkat T lymphocytes by 35.9% ± 3.02% and 54.7% ± 1.32% at 30 μM, respectively. Furthermore, the same genipin concentration inhibited the proliferation of human primary CD4+ T lymphocytes stimulated with CD3/CD28 antibodies by 54.9% ± 8.22%, as evaluated by carboxyfluorescein succinimidyl ester assay. Our findings suggest that genipin may be one of the active components of GJ responsible for T cell suppression, which is partially mediated by activation of the ORAI1 channel. This study helps us understand the mechanisms of GJ in the treatment of inflammatory diseases.

Protective Effect of Enerbalance on Cadmium-induced Testicular Damages in Mice (카드뮴에 의해 유도된 마우스의 고환 독성 모델에서 에너발란스의 보호 효과)

  • Park, Kwang-Hyun;Mok, Ji-Ye;Kim, Sung-Zoo;Kang, Hyung-Sub;Shim, Jae-Suk;Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.482-488
    • /
    • 2011
  • Cadmium (Cd) is well known as a spermatotoxic and gonadotoxic heavy metal ion. This study was performed to assess the possible protective effect of Enerbalance on Cd-induced spermiotoxicity and testicular damage. The control group received isotonic saline; Cd group received Cd (2 mg/kg BW per day) orally; extract-treated groups were orally administrated with Enerbalance (50 mg and 100 mg/kg BW per day) and Cd for 10 days. Morphological changes of testicular tissue, sperm characteristics, oxidative/antioxidative parameters from testis, and serum sexual hormone level were determined. Enerbalance was significantely increased sperm amount in cauda epididymis without changes of ratio of epididymis/body weight and testis/body weight. Cd caused a marked decrease in epididymal sperm concentration and chemotactic sperm motility, testicular superoxide dismutase (SOD), catalase (CAT), Enerbalance was significantly ameliorated loss of epididymal sperm concentration, sperm chemotactic motility, antioxidative parameters, and male hormone whereas decreased abnormal architecture by testis damage. Enerbalance was successfully attenuated these adverse effects of Cd and offers a dose-dependent protection. Our study demonstrated that Enerbalance could proffer a measure of protection against Cd-induced testicular damage and spermiotoxicity by possibly reducing oxidative stress and increasing the antioxidant defense mechanism in mice.

Tacrolimus Differentially Regulates the Proliferation of Conventional and Regulatory CD4+ T Cells

  • Kogina, Kazue;Shoda, Hirofumi;Yamaguchi, Yumi;Tsuno, Nelson H;Takahashi, Koki;Fujio, Keishi;Yamamoto, Kazuhiko
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.125-130
    • /
    • 2009
  • Tacrolimus is a widely used T cell targeted immunosuppressive drug, known as a calcineurin inhibitor. However, the exact pharmacological effects of tacrolimus on $CD4^+$ T cells have yet to be elucidated. This study investigated the effects of tacrolimus on $CD4^+$ T cell subsets. Mouse or human $CD4^+$ T cells were cultured with immobilized anti-CD3/CD28 antibodies in the presence of tacrolimus. The cell division of $CD4^+$ T cells was analyzed using a flow cytometer according to the expression of Foxp3. The gene expression patterns of tacrolimus-exposed T cells were examined by quantitative PCR. In the case of conventional $CD4^+$ T cells (Tconv cells), tacrolimus inhibited T cell receptor stimulation-induced cell division. In contrast, the cell division of regulatory $CD4^+$ T cells (Treg cells) was even promoted in the presence of tacrolimus, especially in humans. Tacrolimus did not promote conversion of Tconv to Treg cells in mice. Furthermore, tacrolimus modified the expression levels of Foxp3-regulated T cell receptor signal related-genes, PTPN22 and Itk, in human Treg cells. Immunosuppressive effect of tacrolimus may be attributed to the relatively enhanced proliferation of Treg cells in association with altered gene expression levels of TCR signaling molecules.

Inhibitory Effects of Methanol Extract from Nardostachys chinensis on 27-hydroxycholesterol-induced Differentiation of Monocytic Cells

  • Son, Yonghae;Kim, Hyungwoo;Yang, Beodeul;Kim, Boyoung;Park, Young Chul;Kim, Koanhoi
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.239-246
    • /
    • 2017
  • 27-Hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined the effect of methanol extract of Nardostachys chinensis (Nard) on 27OHChol-induced differentiation using THP-1, a human monocytic cell line. Treatment of monocytic cells with methanol extract of Nard resulted in decreased transcription and surface expression of CD80, CD83, and CD88 elevated by 27OHChol in a dose-dependent manner. Surface levels of MHC class I and II molecules elevated by 27OHChol were also reduced to basal levels by treatment with the Nard extract. Decreased endocytosis activity caused by 27OHChol was recovered by treatment with the Nard extract. CD197 expression and cell attachment were attenuated by the Nard extract. In addition, levels of transcription and surface expression of CD molecules involved in atherosclerosis, such as CD105, CD137, and CD166 upregulated by 27OHChol were significantly decreased by treatment with methanol extract of Nard. These results indicate that methanol extract of Nard down-regulates 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules associated with atherosclerosis. The current study suggests that biological activity of oxygenated cholesterol derivatives can be inhibited by herbal medication.

Lipoteichoic Acid Suppresses Effector T Cells Induced by Staphylococcus aureus-Pulsed Dendritic Cells

  • Son, Young Min;Song, Ki-Duk;Park, Sung-Moo;Han, Seung Hyun;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.1023-1030
    • /
    • 2013
  • Lipoteichoic acid (LTA), uniquely expressed on gram-positive bacteria, is recognized by Toll-like receptor 2 (TLR2) on not only antigen-presenting cells but also activated T cells. Therefore, it is reasonable to assume that LTA is acting on T cells. However, little is known about the effect of LTA on T-cell regulation. In the present study, we investigated the immunomodulatory effects of LTA on $CD4^+$ T cells. Effector $CD4^+$ T cells, induced after co-culture with S. aureus-pulsed dendritic cells, produced high levels of interferon-${\gamma}$, CD25, CD69, and TLRs 2 and 4. When effector $CD4^+$ T cells were treated with LTA, the expressions of the membrane-bound form of transforming growth factor (TGF)-${\beta}$ and forkhead box P3 increased. Coincidently, the proliferation of effector $CD4^+$ T cells was declined after LTA treatment. When TGF-${\beta}$ signaling was blocked by the TGF-${\beta}$ receptor 1 kinase inhibitor, LTA failed to suppress the proliferation of effector $CD4^+$ T cells. Therefore, the present results suggest that LTA suppresses the activity of effector $CD4^+$ T cells by enhancing TGF-${\beta}$ production.

Effects of Cadmium on Glucose Transport in L6 Myocytes (L6 근육세포에서 포도당 수송능에 미치는 $CdCl_2$의 영향)

  • Kang Donghee;Khil Lee-Yong;park Kwangsik;Lee Byung-Hoon;Moon Chang-Kiu
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.75-85
    • /
    • 2005
  • This study was aimed to know the effect of cadmium chloride (CdCl₂) on glucose transport in L6 myotube and its action mechanism. CdCl₂ increased the 2-deoxy- (l-3H)-D-glucose (2-DOG) uptake 1.9 and 2.4 fold at 10 and 25 μM respectively. To investigate the stimulating-mechanism of glucose transport induced by CdCl₂, the wortmannin and PD98059 were used as PI3K (phosphatidylinositol 3-kinase) inhibitor and MAPK inhibitor respectively, which did not affect 2-DOG uptake. This fact suggests that CdCl₂ induced 2-DOG uptake may not be concerned to the insulin signalling pathway. Whereas nifedipine, a calcium channel blocker, and trifluoperazine, a calmodulin inhibitor, were found to inhibit the 2-DOG uptake stimulted by CdCl₂. In addition, we also measured the ROS (reactive oxygen species) production and GSH level in L6 myotube to investigate the correlation between the glucose uptake and ROS. CdCl₂(25 μM) increased ROS generation approximately 1.5 fold and changed the cellular GSH level, but GSSG/GSH ratio remained unchanged. CdCl₂ stimulated 2-DOG uptake and ROS generation were inhibited by N-acetylcystein. And BSO pretreatment, a potent inhibitor of γ-GCS, resulted in the dramatic decrease of 2-DOG uptake and also the increase of the sensitivity to cadmium cytotoxicity. The obtained results suggest that CdCl₂-stimulated glucose uptake might be based on the activation of HMP shunt as an antioxidant defense mechanism of the cells.

Evaluation of Toxicity and Gene Expression Changes Triggered by Quantum Dots

  • Dua, Pooja;Jeong, So-Hee;Lee, Shi-Eun;Hong, Sun-Woo;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1555-1560
    • /
    • 2010
  • Quantum dots (QDs) are extensively employed for biomedical research as a fluorescence reporter and their use for various labeling applications will continue to increase as they are preferred over conventional labeling methods for various reasons. However, concerns have been raised over the toxicity of these particles in the biological system. Till date no thorough investigation has been carried out to identify the molecular signatures of QD mediated toxicity. In this study we evaluated the toxicity of CdSe, $Cd_{1-x}Zn_xS$/ZnS and CdSe/ZnS quantum dots having different spectral properties (red, blue, green) using human embryonic kidney fibroblast cells (HEK293). Cell viability assay for both short and long duration exposure show concentration material dependent toxicity, in the order of CdSe > $Cd_{1-x}Zn_xS$/ZnS > CdSe/ZnS. Genome wide changes in the expression of genes upon QD exposure was also analyzed by wholegenome microarray. All the three QDs show increase in the expression of genes related to apoptosis, inflammation and response towards stress and wounding. Further comparison of coated versus uncoated CdSe QD-mediated cell death and molecular changes suggests that ZnS coating could reduce QD mediated cytotoxicity to some extent only.

Adsorption of Cd on Carbonaceous Adsorbent Developed from Automotive Waste Tire (자동차 폐타이어로부터 발달된 탄소질 흡착제에 의한 Cd의 흡착)

  • Kim, Younjung;Uh, Eun Jeong;Choi, Jong Ha;Hong, Yong Pyo;Kim, Daeik;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.339-345
    • /
    • 2017
  • Carbonaceous adsorbent (CA-WTP) was prepared by heat treatment at $400^{\circ}C$ for 2 h in N2 atmosphere using waste tire powder (WTP). WTP and CA-WTP were first characterized by thermo-gravimetric analysis (TGA), energy dispersive X-ray spectrometer (EDS), scanning electron microscopy (SEM), specific surface area analysis (BET) and FT-IR spectroscopy. Then, they were tested as adsorbents for removal of Cd in water. CA-WTP exhibited much higher specific surface area and total pore volume than WTP itself and showed higher adsorption capacity for Cd. Equilibrium data of adsorption were analyzed using Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicate that CA-WTP developed from WTP by heat treatment could be used as efficient adsorbent for the removal Cd from water.

Ribavirin Does Not Impair the Suppressive Activity of $Foxp3^+$ $ CD4^+$ $CD25^+$ Regulatory T Cells

  • Lee, Jeewon;Choi, Yoon Seok;Shin, Eui-Cheol
    • IMMUNE NETWORK
    • /
    • v.13 no.1
    • /
    • pp.25-29
    • /
    • 2013
  • Ribavirin is an antiviral drug used in combination with pegylated interferon-${\alpha}$ (IFN-${\alpha}$) for the treatment of hepatitis C virus (HCV) infection. Recently, ribavirin was reported to inhibit the suppressive activity of regulatory T (Treg) cells. In the present study, we re-evaluated the effect of ribavirin on $CD4^+$ $CD4^+$ $CD25^+$ Treg cells from normal donors. First, we examined the expression of CTLA-4 and CD39, which are known to play a role in the suppressive function of Treg cells. We found that ribavirin treatment did not modulate the expression of CTLA-4 and CD39 in Treg cells. We also studied the effect of ribavirin on Treg cells in the presence of IFN-${\alpha}$; however, the expression of CTLA-4 and CD39 in Treg cells was not changed by ribavirin in the presence of IFN-${\alpha}$. Next, we directly evaluated the effect of ribavirin on the suppressive activity of Treg cells in the standard Treg suppression assay, by co-culturing CFSE-labeled non-Treg $CD4^+$ T cells with purified Treg cells. We found that ribavirin did not attenuate the suppressive activity of Treg cells. Taken together, while ribavirin reversed Treg cell-mediated suppression of effector T cells in the previous study, we herein demonstrate that ribavirin does not impair the suppressive activity of Treg cells.