• Title/Summary/Keyword: CCUS

Search Result 20, Processing Time 0.027 seconds

Patent Trend Analysis of Carbon Capture/Storage/Utilization Technology (이산화탄소 포집/저장/활용 기술 특허 동향 분석)

  • Bae, Junhee;Seo, Hangyeol;Ahn, Eunyoung;Lee, Jaewook
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.389-400
    • /
    • 2017
  • In December 2015, 195 nations agreed to cut green house gas emissions in the Paris Climate Convention, and all over the world showed their willingness to participate in greenhouse gas mitigation. Accordingly, various technologies related to greenhouse gas reduction are being considered, among which carbon dioxide capture, storage, utilization (CCUS) technologies are attracting attention as an unique technology capable of directly removing greenhouse gases. However, CCUS technologies are still costly and have low efficiency. It is still more important to analyze the level of CCUS technology before commercialization and to understand trends and to predict future direction of technology. Therefore, this study analyzes the patent trends of CCUS technology and derives implications for future directions. As a result of country analysis, the United States had the highest number of applications, and sectoral analysis shows that 64% of total patents are from capture sector. Companies such as Alstom technology, Toshiba Corp, and Mitsubishi Heavy are focusing on capturing carbon dioxide. In Korea, government research institutes have focused on storage and utilization technologies. In addition, since the late 2000s, patent applications have increased rapidly, and many countries have been interested in the development of the technology and have made efforts to reduce greenhouse gas.

Brief Review on Carbon Dioxide Capture and Utilization Technology (CCU 기술 국내외 연구동향)

  • Kim, Hak Min;Nah, In Wook
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.589-595
    • /
    • 2019
  • The policies and researches for the reduction of greenhouses gases have been performed according to"Paris Agreement". Because South Korea is the $6^{th}$ biggest greenhouses gas emitter in the world, the Korea government has prepared the strategies for the reduction of greenhouse gases. The development of CCUS (Carbon Capture Utilization and Storage) technology is necessary to reduce greenhouse gases. Therefore, the CCUS has been studied by many contries in the world. In this work, the trends of CCUS technologies R&D has been shortly investigated.

Analysis of Patent Trends on the CCUS Technologies (특허 정보 분석을 통한 CCUS 연구개발 동향 분석)

  • Kim, Jung-min;Kim, Seong-Yong;Bae, Junhee;Shinn, Young-Jae;Ahn, Eunyoung;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.491-504
    • /
    • 2020
  • Given the continued climate change and global warming, various technologies for greenhouse gas reduction were discussed worldwide as all 195 countries participated in the Paris Agreement on the reduction of greenhouse gases. The agreement was adopted at the 21st Conference of Parties to the UNFCCC (COP21), which was held in Paris, France, in December 2015, and it revealed that reducing CO2 is the most efficient method of greenhouse gas reduction. Accordingly, carbon capture/utilization/storage (CCUS) technology has been noted as a means of making practical contributions to CO2 reduction, and research and development (R&D) activities in many countries are active in the field of CCUS technology. Therefore, this study aims to provide a basis for CCUS R&D and strategic support measures by analyzing patent trends in technologies related to CCUS. The patent analysis collected a total of 10,137 patents in the United States, Korea, Japan, Europe, and China; the number of patents in the United States was the highest according to patent analysis by country. According to an analysis by technology, capture-related technology was high at 60%, but given the recent increase in technology related to utilization, technology demonstration, R&D, and policy support should be continued.

Analysis on Seismic Interpretation for Overseas Large-scale CO2 Storage Considering Geological History Related to Plate Tectonics (판구조론적 역사를 고려한 해외 대규모 이산화탄소 지중저장소 탄성파 해석 결과 분석)

  • Young-Ju Lee;Ha-Yeon Kang;Yun-Gon Park;Ah-Reum Han;Jae-Young Lee;Ju-Won Oh
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.1-22
    • /
    • 2024
  • Carbon dioxide capture utilization and storage (CCUS) techniques have received significant global attention as they are part of efforts to achieve carbon neutrality by 2050. Large-scale carbon dioxide capture and storage (CCS) projects are being actively pursued in North America, the North Sea, the Middle East, and Oceania. Considering the current situation in South Korea, identifying large-scale CCS sites that can secure an annual domestic carbon storage capacity of 30 million tons by 2050 is crucial Therefore, this study analyzed the formation process and geological characteristics of overseas large-scale CCS projects in terms of plate tectonics. We utilized the GPlates program to interpret the formation processes of large-scale CCS projects in North America, the North Sea, Middle East, and Oceania from the perspective of plate tectonics. Additionally, we investigated the geological structure of the CO2 storage layer and interpreted seismic imaging results obtained from each CCS site. This study will help identify a domestic large-scale CCS site.

Research on Innovation Technologies for Zero Carbon: Carbon Dioxide Reduction in Construction and Concrete Industries (탄소 제로화를 위한 혁신 기술 연구: 건설 및 콘크리트 산업에서의 이산화탄소 저감 방안 동향)

  • Kim, Joo-Hyun;Park, Jung-Jun;Kim, Jong-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.549-563
    • /
    • 2022
  • Continuous global warming is causing ecosystem destruction and direct damage to human life. The main cause of global warming is greenhouse gases, which account for more than 90 % of carbon dioxide. The leaders of each country signed the Paris Agreement at the United Nations Convention on Climate Change (UNFCCC) to reduce greenhouse gas emissions. Currently, the total amount of CO2 emitted from South Korea is 664.7 million tons as of 2018, ranking eighth in the world. 37 % of South Korea's total CO2 emissions come from the construction & building field, especially the cement production, which is a construction material. Carbon reduction technologies can be largely divided into four types: carbon reduction (CC), carbon reduction and storage technology (CCS), carbon reduction and utilization technology (CCU), and carbon reduction, storage and utilization technology (CCUS). Overseas, CCUS technology is mainly applied to reduce and store CO2 emitted from construction and construction field. A technology for permanently storing CO2 through mineralization by capturing CO2 and utilizing CO2 into a cement production process was developed, and this technology is applied to the entire cement industry. However, the development of CCUS technology applicable to the cement industry is still insignificant in South Korea. In this study, carbon dioxide reduction technology and methods for reducing carbon dioxide emitted during the cement manufacturing process, which is the main component of concrete mainly used in civil engineering construction, were investigated. Overseas, it has reached the commercialization stage beyond the demonstration stage as a way to reduce carbon dioxide by vomiting carbonation reactions. Accordingly, if carbon dioxide reduction plan technology generated during cement manufacturing is developed based on domestic technology differentiated from foreign technology, it is expected to contribute one more step to the carbon neutrality policy.

On Antenna Orientation for Inter-Cell Interference Coordination in Cellular Network MIMO Systems

  • Sheu, Jeng-Shin;Lyu, Shin-Hong;Huang, Chuan-Yuan
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.639-648
    • /
    • 2016
  • Next-generation (4G) systems are designed to support universal frequency reuse (UFR) to achieve best use of valuable spectra. However, it leads to undesirable interference level near cell borders. To control this, 4G systems adopt techniques, such as network multiple-input multiple-output (MIMO) and inter-cell interference coordination (ICIC), to improve cell-edge throughput. Network MIMO aims at mitigating inter-cell interference towards cell-edge users (CEUs) through multi-cell cooperation, where each collaborative base station serves both cell-center users (CCUs) and CEUs, including other cells' CEUs, under a power constraint. The present ICIC strategies cannot be directly applied to network MIMO because they were designed in absence of multi-cell coordination. In the presence of network MIMO, this paper investigates antenna orientations in ICIC and the method of power management. Results show that a proper antenna orientation can improve the cell-edge capacity and meantime lower the interference to CCUs. Capacity inconsistency between CCUs and CEUs is detrimental to mobile communications. Simulation results show that the proposed power management for ICIC in network MIMO systems can achieve a uniform data rate regardless users' position.

Analysis of CO2 Emission and Effective CO2 Capture Technology in the Hydrogen Production Process (수소생산 공정에서의 CO2 배출처 및 유효포집기술 분석)

  • Kyung Taek Woo;Bonggyu Kim;Youngseok So;Munseok Baek;Seoungsoo Park;Hyejin Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.77-83
    • /
    • 2023
  • Energy consumption is increased by rapid industrialization. As a result, climate change is accelerating due to the increase in CO2 concentration in the atmosphere. Therefore, a shift in the energy paradigm is required. Hydrogen is in the spotlight as a part of that. Currently 95% of hydrogen is fossil fuel-based reforming hydrogen which is accompanied by CO2 emissions. This is called gray hydrogen, if the CO2 is captured and emission of CO2 is reduced, it can be converted into blue hydrogen. There are 3 technologies to capture CO2: absorption, adsorption and membrane technology. In order to select CO2 capture technology, the analysis of the exhaust gas should be carried out. The concentration of CO2 in the flue gas from the hydrogen production process is higher than 20%if water is removed as well as the emission scale is classified as small and medium. So, the application of the membrane technology is more advantageous than the absorption. In addition, if LNG cold energy can be used for low temperature CO2 capture system, the CO2/N2 selectivity of the membrane is higher than room temperature CO2 capture and enabling an efficient CO2 capture process. In this study, we will analyze the flue gas from hydrogen production process and discuss suitable CO2 capture technology for it.

The Performance Evaluation of In-situ Carbonation Mortar Using Gaseous CO2 (기체 CO2를 사용한 In-situ 탄산화 모르타르 성능평가)

  • Changgun Park;Deukhyun Ryu;Seongwoo Choi;Kwangwoo Wi;Seungmin Lim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, two phases were conducted to investigate the direct injection of gaseous CO2 into cement mortar. The aim was to advance carbon capture, utilization, and storage (CCUS) technology by harnessing industrial waste CO2 from the domestic ready-mixed concrete industry. In the first phase, the factors influencing the physical properties of cement mortar when using gaseous CO2 were identified. This included a review of materials to achieve physical properties comparable to a reference formulation. As a result of this phase, it was confirmed that traditional approaches, such as adjusting the water-to-cement ratio, had limitations in achieving the desired physical properties. Consequently, the second phase focused on the optimization of CO2-injected mortar. This involved studying the CO2 application and mixing method for cement mortar. Changes in properties were observed when gaseous CO2 was injected into the mortar. The optimal injection quantity and time to enhance the compressive strength of mortar were determinded. As a result, this study indicated that an extra mixing time exceeding 120 seconds was necessary, compared to conventional mortar. The optimal CO2 injection rate was identified as 0.1 to 0.2 % by weight of cement, taking both flowability and compressive strength performance into account. Increasing the CO2 injection time did not further enhance strength. For this approach to be employed as a CCUS technology, additional studies are required, including a microstructural analysis evaluating the amount of immobilized CO2.