Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.5.589

Brief Review on Carbon Dioxide Capture and Utilization Technology  

Kim, Hak Min (Korea Institute of Science and Technology, Environment, Health and Welfare Research Center)
Nah, In Wook (Korea Institute of Science and Technology, Environment, Health and Welfare Research Center)
Publication Information
Korean Chemical Engineering Research / v.57, no.5, 2019 , pp. 589-595 More about this Journal
Abstract
The policies and researches for the reduction of greenhouses gases have been performed according to"Paris Agreement". Because South Korea is the $6^{th}$ biggest greenhouses gas emitter in the world, the Korea government has prepared the strategies for the reduction of greenhouse gases. The development of CCUS (Carbon Capture Utilization and Storage) technology is necessary to reduce greenhouse gases. Therefore, the CCUS has been studied by many contries in the world. In this work, the trends of CCUS technologies R&D has been shortly investigated.
Keywords
Greenhouse gases; Carbon capture Utilization; Carbon capture storage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Perera, M., Gamage, R., Rathnaweera, T., Ranathunga, A., Koay, A. and Choi, X., "A Review of $CO_2$-Enhanced Oil Recovery with a Simulated Sensitivity Analysis," Energies, 9(7), 481-502.   DOI
2 Gozalpour, F., Ren, S. R. and Tohidi, B., "$CO_2$ Eor and Storage in Oil Reservoir," Oil Gas Sci. Technol., 60(3), 537-546(2005).   DOI
3 Jang, W.-J., Shim, J.-O., Kim, H.-M., Yoo, S.-Y. and Roh, H.-S., "A Review on Dry Reforming of Methane in Aspect of Catalytic Properties," Catal. Today, 324, 15-26(2019).   DOI
4 Fan, M. S., Abdullah, A. Z. and Bhaia, S., "Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas," ChemCatChem 1(2), 192-208(2009).   DOI
5 Aresta, M. and Dibenedetto, A., "Utilisation of $CO_2$ as a Chemical Feedstock: Opportunities and Challenges," Dalton Trans., 36(28), 2975-2992(2007).   DOI
6 Song, C., "Global Challenges and Strategies for Control, Conversion and Utilization of $CO_2$ for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing," Catal. Today, 115(1-4), 2-32(2006).   DOI
7 Matsubu, J. C., Yang, V. N. and Christopher, P., "Isolated Metal Active Site Concentration and Stability Control Catalytic $CO_2$ Reduction Selectivity," J. Am. Chem. Soc., 137(8), 3076-3084 (2015).   DOI
8 Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Schreiber, A. and Muller, T. E., "Worldwide Innovations in the Development of Carbon Capture Technologies and the Utilization of $CO_2$," Energy Enivron. Sci., 5(6), 7281-7305(2012).   DOI
9 Tunio, S. Q., Mehran, H. T., Ghirano, N. A. and Adawy, Z. M. El, "Comparison of Different Enhanced Oil Recovery Techniques for Better Oil Productivity," Int. J. Appl. Sci. Technol., 1, 143-153(2011).
10 Lee, J. H., Lee, D. W., Jang, S. G., Kwak, N. S., Lee, I. Y., Jang, K. R., Choi, J. S. and Shim, J. G., "Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals," Korean J. Chem. Eng., 52(3), 347-354(2014).   DOI
11 Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Dowell, N. M., Fernandez, J. R., Ferrari, M.-C., Gross, R., Hallett, J. P., Haszeldine, R. S., Heptonstall, P., Lyngfelt, A., Makuch, Z., Mangano, E., Porter, R. T., Pourkashanian, M., Rochelle, G. T., Shah, N., Yao, J. G. and Fennell, P. S., "Carbon Capture and Storage Update," Energy Environ. Sci., 7(1), 130-189(2014).   DOI
12 Goli, A., Shamiri, A., Talaiekhozani, A., Eshtiaghi, N., Aghamohammadi, N. and Aroua, M. K., "An Overview of Biological Processes and Their Potential for $CO_2$ Capture," J. Environ. Mang., 183(1), 41-58(2016).   DOI
13 Plaza, M. G., Rubiera, G. F., Pis, J. J. and Pevida, C., "Post-combustion $CO_2$ Capture with a Commercial Activated Carbon: Comparison of Different Regeneration Strategies," Chem. Eng. J., 163(1-2), 41-47(2010).   DOI
14 Jensen, M. D., Peng, P., Snyder, A. C., Heebink, L. V., Botnen, L. S., Gorecki, C. D., Steadman, E. N. and Harju, J.A., "Methodology for Phased Development of a Hypothetical Pipeline Network for $CO_2$ Transport during Carbon Capture, Utilization, and Storage," Energy & Fuels, 27(8), 4175-4182(2013).   DOI
15 Bruhn, T., Naims, H. and Olfe-Krautlein, B., "Separating the Debate on $CO_2$ Utilisation from Carbon Capture and Storage," Envion. Sci. Policy, 60, 38-43(2016).   DOI
16 Xie, H., Li, X., Fang, Z., Wang, Y., Li, Q., Shi, L., Bai, B., Wei, N. and Hou, Z., "Carbon Geological Utilization and Storage in China: Current Status and Perspectives," Acta Geotech., 9(1), 7-27(2014).   DOI
17 Dantas, T. L. P., Amorim, S. M., Luna, F. M. T., Silva, I. J., Azevedo, D. C. S., Rodrigues, A. E. and Moreira, R. F. P. M., "Adsorption of Carbon Dioxide Onto Activated Carbon and Nitrogen-Enriched Activated Carbon: Surface Changes, Equilibrium and Modelng Fixed-bed Adsorption," Sep. Purif. Technol., 45, 73-84 (2010).
18 Himeno, S., Komatsu, T. and Fujita, S., "High-pressure Adsorption Equilibria of Methane and Carbon Dioxide on Several Activated Carbons," J. Chem. Eng. Data, 50, 369-376(2005).   DOI
19 Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. and Yaghi, O. M., "High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to $CO_2$ Capture," Science 319(5865), 939-943(2008).   DOI
20 Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O'Keeffe, M. and Yaghi, O. M., "Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties," J. Am. Chem. Soc., 131(11), 3875-3877(2009).   DOI
21 Zhao, D., Cleare, K., Oliver, C., Ingram, C., Cook, D., Szostak, R. and Keva, L., "Characteristics of the Synthetic Heulandite-clinoptilolite Family of Zeolites," Microporous Mesoporous Mater., 21(4-6), 371-379(1998).   DOI
22 Wang, Q., Luo, Z., Zhong, Z. and Borgna, A., "$CO_2$ Capture by Solid Adsorbents and Their Applications: Current Status and New Trends," Energy Environ. Sci., 4, 42-55(2011).   DOI
23 Li, J. R., Kuppler, R. J. and Zhou, H. C., "Selective Gas Adsorption and Separation in Metal-Organic Frameworks," Chem. Sco. Rev., 38, 1477-1504(2009).   DOI
24 Li, J. R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong, H. K., Balbuena, P. B. and Zhou, H. C., "Carbon Dioxide Capture-related Gas Adsorption and Separation in Metal-organic Frameworks," Coord. Chem. Rev., 255(15-16), 1791-1823(2011).   DOI
25 Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., Yuan, D., Zhao, D., Zhuang, W. and Zhou, H.-C., "Potential Applications of Metal-organic Frameworks," Cood. Chem. Rev., 253(23-24), 3042-3066(2009).   DOI
26 Xu, X., Song, C., Andresen, J. M., Miller, B. G. and Scaroni, A. W., "Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for $CO_2$ Capture," Energy Fuels, 16(6), 1463-1469(2002).   DOI
27 Xu, X., Song, C., Miller, B. G. and Scaroni, A. W., "Influence of Moisture on $CO_2$ Separation from Gas Mixture by a Nanoporous Adsorbent Based on Polyethylenimine-Modified Molecular Sieve MCM-41," Ind. Eng. Chem. Res., 44(21), 8113-8119(2005).   DOI
28 Kato, M., Yoshikawa, S. and Nakagawa, K., "Carbon Dioxide Absorption by Lithium Orthosilicate in a Wide Range of Temperature and Carbon Dioxide Concentrations," J. Mater. Sci. Lett., 21(6), 475-487(2002).
29 Ma, X., Wang, X. and Sog, C., ""Molecular Basket" Sorbents for Separation of $CO_2$ and H2S from Various Gas Streams," J. Am. Chem. Soc., 131(16), 5777-5783(2009).   DOI
30 Wang, D., Sentorun-Shalaby, C., Ma, X. and Song, C., "High-Capacity and Low-Cost Carbon-Based "Molecular Basket" Sorbent for $CO_2$ Capture from Flue Gas," Energy Fuels, 25(1), 456-458(2011).   DOI
31 Xiong, R., Ida, J. and Lin, Y. S., "Kinetics of Carbon Dioxide Sorption on Potassium-doped Lithium Zirconate," Chem. Eng. Sci., 58(19), 4377-4385(2003).   DOI
32 Venegas, M. J., Fregoso-Israel, E., Escamilla, R. and Pfeiffer, H., "Kinetic and Reaction Mechanism of $CO_2$ Sorption on $Li_4SiO_4$: Study of the Particle Size Effect," Ind. Eng. CHem. Res., 46(8), 2407-2412(2007).   DOI
33 Iwan, A., Stephenson, H., Ketchie, W. C. and Lapkin, A. A., "High Temperature Sequestration of $CO_2$ Using Lithium Zirconates," Chem. Eng. J., 146(2), 249-258(2009).   DOI
34 LI, Z. S., Cai, N. S. and Huang, Y. Y., "Effect of Preparation Temperature on Cyclic $CO_2$ Capture and Multiple Carbonation-Calcination Cycles for a New Ca-Based $CO_2$ Sorbent," Ind. Eng. Chem. Res., 45(6), 1911-1917(2006).   DOI
35 Powell, C. E. and Qiao, G. G., "Polymeric $CO_2/N_2$ Gas Separation Membranes for the Capture Carbon Dioxide from Power Plant Flue Gases," J. Membr. Sci., 279(1-2), 1-49(2006).   DOI
36 Che, T. L., Ahmad, A. L. and Bhatia, S., "Ordered Mesoporous Silica (OMS) as an Adsorbent and Membrane for Separation of Carbon Dioxide ($CO_2$)," Adv. Colloid Interface Sci., 153(1-2), 43-57(2010).   DOI