• Title/Summary/Keyword: CCND1

Search Result 31, Processing Time 0.031 seconds

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

Reduction of Proliferation and Induction of Apoptosis are Associated with Shrinkage of Head and Neck Squamous Cell Carcinoma due to Neoadjuvant Chemotherapy

  • Sarkar, Shreya;Maiti, Guru Prasad;Jha, Jayesh;Biswas, Jaydip;Roy, Anup;Roychoudhury, Susanta;Sharp, Tyson;Panda, Chinmay Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6419-6425
    • /
    • 2013
  • Background: Neoadjuvant chemotherapy (NACT) is a treatment modality whereby chemotherapy is used as the initial treatment of HNSCC in patients presenting with advanced cancer that cannot be treated by other means. It leads to shrinkage of tumours to an operable size without significant compromise to essential oro-facial organs of the patients. The molecular mechanisms behind shrinkage due to NACT is not well elucidated. Materials and Methods: Eleven pairs of primary HNSCCs and adjacent normal epithelium, before and after chemotherapy were screened for cell proliferation and apoptosis. This was followed by immunohistochemical analysis of some cell cycle (LIMD1, RBSP3, CDC25A, CCND1, cMYC, RB, pRB), DNA repair (MLH1, p53) and apoptosis (BAX, BCL2) associated proteins in the same set of samples. Results: Significant decrease in proliferation index and increase in apoptotic index was observed in post-therapy tumors compared to pre-therapy. Increase in the RB/pRB ratio, along with higher expression of RBSP3 and LIMD1 and lower expression of cMYC were observed in post-therapy tumours, while CCND1 and CDC25A remained unchanged. While MLH1 remained unchanged, p53 showed higher expression in post-therapy tumors, indicating inhibition of cell proliferation and induction of apoptosis. Increase in the BAX/BCL2 ratio was observed in post-therapy tumours, indicating up-regulation of apoptosis in response to therapy. Conclusions: Thus, modulation of the G1/S cell cycle regulatory proteins and apoptosis associated proteins might play an important role in tumour shrinkage due to NACT.

Evolution of the Mir-155 Family and Possible Targets in Cancers and the Immune System

  • Xie, Guang-Bing;Liu, Wei-Jia;Pan, Zhi-Jun;Cheng, Tian-Yin;Luo, Chao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7547-7552
    • /
    • 2014
  • The mir-155 family is not only involved in a diversity of cancers, but also as a regulator of the immune system. However, the evolutionary history of this family is still unclear. The present study indicates that mir-155 evolved independently with lineage-specific gain of miRNAs. In addition, arm switching has occurred in the mir-155 family, and alternative splicing could produce two different lengths of ancestral sequences, implying the alternative splicing can also drive evolution for intragenic miRNAs. Here we screened validated target genes and immunity-related proteins, followed by analyzation of the mir-155 family function by high-throughput methods like the gene ontology (GO) and Kyoto Eneyclopedin of Genes and Genemes (KEGG) pathway enrichment analysis. The high-throughput analysis showed that the CCND1 and EGFR genes were outstanding in being significantly enriched, and the target genes cebpb and VCAM1 and the protein SMAD2 were also vital in mir-155-related immune reponse activities. Therefore, we conclude that the mir-155 family is highly conserved in evolution, and CCND1 and EGFR genes might be potential targets of mir-155 with regard to progress of cancers, while the cebpb and VCAM1 genes and the protein SMAD2 might be key factors in the mir-155 regulated immune activities.

Comparison of Erythrocyte Traits Among European, Japanese and Korean

  • Kwon, Ji-Sun;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.159-163
    • /
    • 2010
  • Erythrocyte traits are heritable and indirect indicators of blood diseases caused by erythrocyte, but their genetic factors are largely unknown. So we performed genome-wide association study in 8,842 Korean individuals to identify genetic factors influencing erythrocyte traits. We identified 40 associations for three erythrocyte traits at genome-wide significance levels (p < $1{\times}10^{-6}$). We compared these associated loci with those reported in genome-wide association studies of European and Japanese. Our findings include previously identified loci(HBS1L-MYB, TMPRSS6, USP49 and CCND3) in other studies and novel associations (MRDS1/OFCC1, CSDE1, NRAS and 8 other loci). For example, SNP rs4895440 of HBS1L-MYB intergenic region on chromosome 6q23.3 is one of the most associations influencing erythrocyte traits (p=$8.33{\times}10^{-27}$).

Zearalenone exposure affects the Wnt/β-catenin signaling pathway and related genes of porcine endometrial epithelial cells in vitro

  • Song, Tingting;Yang, Weiren;Huang, Libo;Yang, Zaibin;Jiang, Shuzhen
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.993-1005
    • /
    • 2021
  • Objective: Zearalenone (ZEA) has estrogen-like effects. Our previous study has shown that ZEA (0.5 to 1.5 mg/kg) could induce abnormal uterine proliferation through transforming growth factor signaling pathway. To further study the other regulatory networks of uterine hypertrophy caused by ZEA, the potential mechanism of ZEA on porcine endometrial epithelial cells (PECs) was explored by the Illumina Hiseq 2000 sequencing system. Methods: The PECs were treated with ZEA at 0 (ZEA0), 5 (ZEA5), 20 (ZEA20), and 80 (ZEA80) µmol/L for 24 h. The collected cells were subjected to cell cycle, RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and western blot analysis. Results: The proportion of cells in the S and G2 phases decreased (p<0.05), but the proportion of cells in the G1 phase increased (p<0.05) in the ZEA80 treatment. Data analysis revealed that the expression of Wnt pathway-related genes, estrogen-related genes, and mitogen-activated protein kinase pathway-related genes increased (p<0.05), but the expression of genetic stability genes decreased (p<0.05) with increasing ZEA concentrations. The relative mRNA and protein expression of WNT1, β-catenin, glycogen synthase kinase 3β (GSK-3β) were increased (p<0.05) with ZEA increasing, while the relative mRNA and protein expression of cyclin D1 (CCND1) was decreased (p<0.05). Moreover, our immunofluorescence results indicate that β-catenin accumulated around the nucleus from the cell membrane and cytoplasm with increasing ZEA concentrations. Conclusion: In summary, ZEA can activate the Wnt/β-catenin signaling pathway by up-regulating WNT1 and β-catenin expression, to promote the proliferation and development of PECs. At the same time, the up-regulation of GSK-3β and down-regulation of CCND1, as well as the mRNA expression of other pathway related genes indicated that other potential effects of ZEA on the uterine development need further study.

Overexpression of cholinergic receptor nicotinic gamma subunit inhibits proliferation and differentiation of bovine preadipocytes

  • Jiawei, Du;Hui, Zhao;Guibing, Song;Yuan, Pang;Lei, Jiang;Linsen, Zan;Hongbao, Wang
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.200-208
    • /
    • 2023
  • Objective: Muscle acetylcholine receptors have five alpha subunits (α, β, δ, ε, or γ), and cholinergic receptor nicotinic gamma subunit (CHRNG) is the γ subunit. It may also play an essential role in biological processes, including cell differentiation, growth, and survival, while the role of CHRNG has not been studied in the literature. Therefore, the purpose of this study is to clarify the effect of CHRNG on the proliferation and differentiation of bovine preadipocytes. Methods: We constructed a CHRNG overexpression adenovirus vector and successfully overexpressed it on bovine preadipocytes. The effects of CHRNG on bovine preadipocyte proliferation were detected by Edu assay, cell counting Kit-8 (CCK-8), real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), Western blot and other techniques. We also performed oil red O, RT-qPCR, Western blot to explore its effect on the differentiation of preadipocytes. Results: The results of Edu proliferation experiments showed that the number of EDU-positive cells in the overexpression group was significantly less. CCK-8 experiments found that the optical density values of the cells in the overexpression group were lower than those of the control group, the mRNA levels of proliferating cell nuclear antigen (PCNA), cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin D2 (CCND2) decreased significantly after CHRNG gene overexpression, the mRNA levels of cyclin dependent kinase inhibitor 1A (CDKN1A) increased significantly, and the protein levels of PCNA, CCNB1, CCND2 decreased significantly. Overexpression of CHRNG inhibited the differentiation of bovine preadipocytes. The results of oil red O and triglyceride determination showed that the size and speed of lipid droplets accumulation in the overexpression group were significantly lower. The mRNA and protein levels of peroxisome proliferator activated receptor gamma (PPAR class="checkNonKBPoint">γ), CCAAT enhancer binding protein alpha (CEBPα), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN) decreased significantly. Conclusion: Overexpression of CHRNG in bovine preadipocytes inhibits the proliferation and differentiation of bovine preadipocytes.

Thoracic Duct Embolization for Treatment of Chyle Leakage After Thyroidectomy and Neck Dissection

  • Sungmo Moon;Juil Park;Gyoung Min Kim;Kichang Han;Joon Ho Kwon;Man-Deuk Kim;Jong Yun Won;Hyung Cheol Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.55-61
    • /
    • 2024
  • Objective: This study aimed to evaluate the safety and efficacy of intranodal lymphangiography and thoracic duct embolization (TDE) for chyle leakage (CL) after thyroid surgery. Materials and Methods: Fourteen patients who underwent intranodal lymphangiography and TDE for CL after thyroid surgery were included in this retrospective study. Among the 14 patients, 13 underwent bilateral total thyroidectomy with neck dissection (central compartment neck dissection [CCND], n = 13; left modified radical neck dissection (MRND), n = 11; bilateral MRND, n = 2), and one patient underwent left hemithyroidectomy with CCND. Ten patients (76.9%) had high-output CL (> 500 mL/d). Before the procedure, surgical intervention was attempted in three patients (thoracic duct ligation, n = 1; lymphatic leakage site ligation, n = 2). Lymphangiographic findings, technical and clinical successes, and complications were analyzed. Technical success was defined as the successful embolization of the thoracic duct after access to the lymphatic duct via the transabdominal route. Clinical success was defined as the resolution of CL or surgical drain removal. Results: On lymphangiography, ethiodized oil leakage near the surgical bed was identified in 12 of 14 patients (85.7%). The technical success rate of TDE was 78.6% (11/14). Transabdominal antegrade access was not feasible due to the inability to visualize the identifiable cisterna chyli or a prominent lumbar lymphatic duct. Among patients who underwent a technically successful TDE, the clinical success rate was 90.1% (10/11). The median time from the procedure to drain removal was 3 days (with a range of 1-13 days) for the 13 patients who underwent surgical drainage. No CL recurrence was observed during the follow-up period (ranging from 2-44 months; median, 8 months). There were no complications, except for one case of chylothorax that developed after TDE. Conclusion: TDE appears to be a safe and effective minimally invasive treatment option for CL after thyroid surgery, with acceptable technical and clinical success rates.

Increased Expression of Cyclin D3 are Involved in Hepatocellular Carcinoma

  • Kim, Gi-Jin;Sun, Woong;Won, Nam-Hee;Park, Sun-Hwa
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.93-99
    • /
    • 2008
  • Human cyclin D3 gene (CCND3) located on 6p21.1 is important for the regulation of the G1-S phase transition of the cell cycle by modulating the activity of the cyclin-dependent kinases Cdk4 and Cdk6. Because little is known about the effect of cyclin D3 in various human cancers, we evaluated the intricate relationship between expression of cyclin D3 and the process of HCC development using immunohis tochemistry and TUNEL assay on 43 paraffin embedded tissues. Cyclin D3 immunoreactivity was more frequently observed in the tumors with high histologic grade and the tumors with metastasis, and more frequently expressed in HCCs with cirrhotic background and gain of 6p21.1 when compared with those with non-neoplastic tissue. Apoptotic cells were more common in tumor with cirrhotic background, amplification of 6p21.1 and expression of cyclin D3 when compared with HCCs with lower level of cyclin D3 expression. Also, we observed that some of the cyclin D3 positive cell and apoptotic cell were co-localized. From these results, it is suggested that over-expression of cyclin D3 may contribute to more rapid cell turn-over in the background of HCC, and balance between proliferation and apoptosis is a role in the progression of HCC with cirrhotic background.

Let-7c Inhibits NSCLC Cell Proliferation by Targeting HOXA1

  • Zhan, Min;Qu, Qiang;Wang, Guo;Liu, Ying-Zi;Tan, Sheng-Lan;Lou, Xiao-Ya;Yu, Jing;Zhou, Hong-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.387-392
    • /
    • 2013
  • Objective: The aim of the present study was to explore mechanisms by which let-7c suppresses NSCLC cell proliferation. Methods: The expression level of let-7c was quantified by qRT-PCR. A549 and H1299 cells were transfected with let-7c mimics to restore the expression of let-7c. The effects of let-7c were then assessed by cell proliferation, colony formation and cell cycle assay. Mouse experiments were used to confirm the effect of let-7c on tumorigenicity in vivo. Luciferase reporter assays and Western blotting were performed to identify target genes for let-7c. Results: HOXA1 was identified as a novel target of let-7c. MTS, colony formation and flow cytometry assays demonstrated that forced expression of let-7c inhibited NSCLC cell proliferation by inducing G1 arrest in vitro, consistent with inhibitory effects induced by knockdown of HOXA1. Mouse experiments demonstrated that let-7c expression suppressed tumorigenesis. Furthermore, we found that let-7c could regulate the expression of HOXA1 downstream effectors CCND1, CDC25A and CDK2. Conclusions: Collectively, these results demonstrate let-7c inhibits NSCLC cell proliferation and tumorigenesis by partial direct targeting of the HOXA1 pathway, which suggests that restoration of let-7c expression may thus offer a potential therapeutic intervention strategy for NSCLC.

Cyclin D1 Gene G870A Variants and Primary Brain Tumors

  • Zeybek, Umit;Yaylim, Ilhan;Ozkan, Nazli Ezgi;Korkmaz, Gurbet;Turan, Saime;Kafadar, Didem;Cacina, Canan;Kafadar, Ali Metin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4101-4106
    • /
    • 2013
  • Alterations of cyclin D1, one of the main regulators of the cell cycle, are known to be involved in various cancers. The CCDN1 G870A polymorphism causes production of a truncated variant with a shorter half-life and thus thought to impact the regulatory effect of CCDN1. The aim of the present study was to contribute to existing results to help to determine the prognostic value of this specific gene variant and evaluate the role of CCDN1 G870A polymorphism in brain cancer susceptibility. A Turkish study group including 99 patients with primary brain tumors and 155 healthy controls were examined. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. The CCDN1 genotype frequencies in meningioma, glioma and control cases were not significantly different (p>0.05). No significant association was detected according to clinical parameters or tumor characteristics; however, a higher frequency of AG genotype was recorded within patients with astrocytic or oligoastrocytic tumors. A significant association between AG genotype and gliobilastoma multiforme (GBM) was recorded within the patients with glial tumors (p value=0.048 OR: 1.87 CI% 1.010-3.463). According to tumor characteristics, no statistically significant difference was detected within astrocytic, oligoasltrocytic tumors and oligodentrioglias. However, patients with astrocytic astrocytic or oligoastrocytic tumors showed a higher frequency of AG genotype (50%) when compared to those with oligodendrioglial tumors (27.3%). Our results indicate a possible relation between GBM formation and CCDN1 genotype.