• Title/Summary/Keyword: CCD cameras

Search Result 264, Processing Time 0.038 seconds

Establishment of Remote Meteor Spectroscopic Observation System and Observation Case Study (원격 유성 분광 관측 시스템 구축과 관측 사례 연구)

  • Choi, Dong-Yeol
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • We provide a detailed description of the installation and operation of a remote spectroscopic meteor observation system at Unjangsan optical astronomy observatory. Three light-sensitive charge-coupled device cameras were installed, and two cameras had a diffraction grating attached to the front of the lens. Station employ sensitive "Watec-902H2" cameras in combination with f/1.2 lenses were installed in November 2019. Diffraction gratings for spectral observations were used at 500 l/mm. Observations were conducted from November 2019 to June 2020. We employed the SonotaCo UFO software suite for meteor detection. Subsequently, meteor spectra were analyzed using field-tested RSpec software. To analyze the observation images, astronomical calibration and photometric calibration were performed, and the chemical elements of the meteor were determined. The study results are presented along with the system setup installation and operation experience. Brief information regarding the origin of the meteor was also provided based on the results.

The Development of Real Time Automatic Patient Position Correction System during the Radiation Therapy Based on CCD: A Feasibility Study (CCD기반의 방사선치료 중 실시간 자동 환자 위치보정 시스템 개발: 타당성 연구)

  • Shin, Dongho;Chung, Kwangzoo;Kim, Meyoung;Son, Jaeman;Yoon, Myonggeun;Lim, Young Kyung;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.191-197
    • /
    • 2013
  • Upon radiation treatment, it is the important factor to monitor the patient's motion during radiation irradiated, since it can determine whether the treatment is successful. Thus, we have developed the system in which the patient's motion is monitored in real time and moving treatment position can be automatically corrected during radiation irradiation. We have developed the patient's position monitoring system in which the patient's position is three dimensionally identified by using two CCD cameras which are orthogonal located around the isocenter. This system uses the image pattern matching technique using a normalized cross-correlation method. We have developed the system in which trigger signal for beam on and off is generated by quantitatively analyzing the changes in a treatment position through delivery of the images taken from CCD cameras to the computer and the motor of moving couch can be controlled. This system was able to automatically correct a patient's position with the resolution of 0.5 mm or less.

Analysis of sideward footprint of Multi-view imagery by sidelap changing (횡중복도 변화에 따른 다각사진 Sideward Footprint 분석)

  • Seo, Sang-Il;Park, Seon-Dong;Kim, Jong-In;Yoon, Jong-Seong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.53-56
    • /
    • 2010
  • An aerial multi-looking camera system equips itself with five separate cameras which enables acquiring one vertical image and four oblique images at the same time. This provides diverse information about the site compared to aerial photographs vertically. However, multi-looking Aerial Camera for building a 3D spatial information don't use a large-size CCD camera, do uses a medium-size CCD camera, if acquiring forward, backward, left and right imagery of Certain objects, Aerial photographing set overlap and sidelap must be considered. Especially, Sideward-looking camera set up by the sidelap to determine whether a particular object can be acquisition Through our research we analyzed of sideward footprint and aerial photographing efficiency of Multi-view imagery by sidelap changing.

  • PDF

CROSSTALK CORRECTION OF THE KMTNet MOSAIC CCD IMAGE (KMTNet 모자이크 CCD 영상의 크로스톡 보정)

  • KIM, SEUNG-LEE;CHA, SANG-MOK;LEE, CHUNG-UK;KIM, DONG-JIN;PARK, BYEONG-GON;LEE, YONGSEOK;PARK, HONG SOO;KYEONG, JAEMANN;CHUN, MOO-YOUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.31 no.3
    • /
    • pp.35-41
    • /
    • 2016
  • We have constructed a wide-field photometric survey system called as the Korea Microlensing Telescope Network (KMTNet) in 2015. It consists of three 1.6 m optical telescopes equipped with mosaic CCD cameras. Four 9k CCDs were installed on the focal plane of each telescope. In this paper, we present the crosstalk analysis of the KMTNet mosaic CCD images. The crosstalk victims caused by bright sources were visible at eight sub-images obtained through different readout ports of each CCD. The crosstalk coefficients were estimated to be several tens of $10^{-4}$ in maximum, differing from sub-image to sub-image, and the non-linearity effect certainly appeared at the victims made from saturated sources. We developed software functions to correct the crosstalk effect of the KMTNet CCD images. The software functions showed satisfying results to remove clearly most of the crosstalk victims and have been implemented in the KMTNet image processing pipeline since 2015 September.

Development of a Point Tracking System for Measuring Structural Deformations Using Commercial Video Cameras

  • Kim, Hong-Il;Kim, Ho-Young;Park, Hyun-Jin;Han, Jae-Hung;Kim, Jun-Bum;Kim, Do-Hyung;Han, Jeong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • This paper deals with the creation of a new, low-cost point/position tracking system that can measure deformations in engineering structures with simple commercially widespread cameras. Though point tracking systems do exist today, such as Stereo Pattern Recognition (SPR) and Projection Moir$\acute{e}$ Interferometry (PMI) systems, they are far too costly to use to analyze small, simple structures because complex optical components such as large flashes, high-resolution cameras and data acquisition systems with several computers are required. We developed a point tracking system using commercial cameras. This system used IR LEDs and commercial IR CCD cameras to minimize the interference posed by other extraneous light sources. The main algorithm used for this system is an optical point tracking algorithm, which is composed of the point extraction algorithm and the point matching algorithm for 3-D motion estimation. a series of verification tests were performed. Then, the developed point tracking system was applied to measure deformations of an acrylic plate under a mechanical load. The measured deformations of the acrylic plate matched well with the numerical analysis results. The results indicate that the developed point tracking system is reliable enough to measure continuous deformed shapes of various engineering structures.

GEOMETRY OF SATELLITE IMAGES - CALIBRATION AND MATHEMATICAL MODELS

  • JACOBSEN KARSTEN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Satellite cameras are calibrated before launch in detail and in general, but it cannot be guaranteed that the geometry is not changing during launch and caused by thermal influence of the sun in the orbit. Modem satellite imaging systems are based on CCD-line sensors. Because of the required high sampling rate the length of used CCD-lines is limited. For reaching a sufficient swath width, some CCD-lines are combined to a longer virtual CCD-line. The images generated by the individual CCD-lines do overlap slightly and so they can be shifted in x- and y-direction in relation to a chosen reference image just based on tie points. For the alignment and difference in scale, control points are required. The resulting virtual image has only negligible errors in areas with very large difference in height caused by the difference in the location of the projection centers. Color images can be related to the joint panchromatic scenes just based on tie points. Pan-sharpened images may show only small color shifts in very mountainous areas and for moving objects. The direct sensor orientation has to be calibrated based on control points. Discrepancies in horizontal shift can only be separated from attitude discrepancies with a good three-dimensional control point distribution. For such a calibration a program based on geometric reconstruction of the sensor orientation is required. The approximations by 3D-affine transformation or direct linear transformation (DL n cannot be used. These methods do have also disadvantages for standard sensor orientation. The image orientation by geometric reconstruction can be improved by self calibration with additional parameters for the analysis and compensation of remaining systematic effects for example caused by a not linear CCD-line. The determined sensor geometry can be used for the generation? of rational polynomial coefficients, describing the sensor geometry by relations of polynomials of the ground coordinates X, Y and Z.

  • PDF

An Automatic Mapping Points Extraction Algorithm for Calibration of the Wide Angle Camera (광각 카메라 영상의 보정을 위한 자동 정합 좌표 추출 방법)

  • Kim, Byung-Ik;Kim, Dae-Hyeon;Bae, Tae-Wuk;Kim, Young-Choon;Shim, Tae-Eun;Kim, Duk-Gyoo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.410-416
    • /
    • 2010
  • This paper presents the auto-extraction method that searches for the Mapping points in the calibration algorithm of the image acquired by the wide angle CCD camera. In this algorithm, we remove the noise from the distorted image and then obtain the edge image. Proposed method extracts the distortion point, comparing the threshold value of the histogram of the horizontal and vertical pixel lines in edge image. This processing step can be directly applied to the original image of the wide angle CCD camera output. Proposed method results are compared with hand-worked result image using the two wide angle CCD cameras having different angles with the difference value of the result images respectively. Experimental results show that proposed method can allocate the distortion-calibration constant of the wide angle CCD camera regardless of lens type, distortion shape and image type.

The design of 4s-van for GIS DB construction (GIS DB 구축을 위한 4S-VAN 설계)

  • Lee, Seung-Yong;Kim, Seong-Baek;Lee, Jong-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.89-97
    • /
    • 2002
  • We have developed the 45-Van system in order to maximize the interoperability of spatial data in 45(GNSS, SIIS, GIS, ITS) by sharing and providing spatial data of remote site. The 4S-Van system enables to acquisition and production of information for GIS database and the accurate position information by combining and connecting GPS/IMU, laser, CCD(charged-coupled device) image, and wireless telecommunication technology. That is, 4S-Van system measures its position and attitude using integrated GPS/IMU and takes two photographs of the front scene by two CCD cameras, analyzes position of objects by space intersection method, and constructs database that has compatibility with existing vector database system. Furthermore, infrared camera and wireless communication technique can be applied to the 4S-Van for a variety of applications. In this paper, we discuss the design and functions of 4S-Van that is equipped with GPS, CCD camera, and IMU.

  • PDF

Geometric Modelling and Coordinate Transformation of Satellite-Based Linear Pushbroom-Type CCD Camera Images (선형 CCD카메라 영상의 기하학적 모델 수립 및 좌표 변환)

  • 신동석;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.85-98
    • /
    • 1997
  • A geometric model of pushbroom-type linear CCD camera images is proposed in this paper. At present, this type of cameras are used for obtaining almost all kinds of high-resolution optical images from satellites. The proposed geometric model includes not only a forward transformation which is much more efficient. An inverse transformation function cannot be derived analytically in a closed form because the focal point of an image varies with time. In this paper, therefore, an iterative algorithm in which a focal point os converged to a given pixel position is proposed. Although the proposed model can be applied to any pushbroom-type linear CCD camera images, the geometric model of the high-resolution multi-spectral camera on-board KITSAT-3 is used in this paper as an example. The flight model of KITSAT-3 is in development currently and it is due to be launched late 1998.

The Image Measuring System for accurate calibration-matching in objects (정밀 켈리브레이션 정합을 위한 화상측징계)

  • Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.357-358
    • /
    • 2006
  • Accurate calibration matching for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The camera calibration is a necessary procedure for stereo vision-based depth computation. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. No effective methods for such alignment have been presented before. Some amount of depth error caused from such non-parallel installation of cameras is inevitable. If the pixel distance parameter which is one of Intra parameter is calibrated with known points, such error can be compensated in some amount and showed the variable experiments for accurate effects.

  • PDF