• Title/Summary/Keyword: CCD(Central Composite Design)

Search Result 161, Processing Time 0.025 seconds

Approximate Optimization of the Power Transmission Drive Shaft Considering Strength Design Condition (강도 조건을 고려한 동력 전달 드라이브 샤프트의 근사최적설계)

  • Shao, Hailong;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.186-191
    • /
    • 2015
  • Presently, rapidly changing and unstable global economic environments demand engineers. Products should be designed to increase profits by lowering costs and provide distinguished performance compared with competitors. This study aims to optimize the design of the power-transmission drive shaft. The mass is reduced as an objective function, and the stress is constrained under a constant value. To reduce the number of experiments, CCD (central composite design) and D-Optimal are used for the experimental design. RSM (response surface methodology) is employed to construct a regression model for the objective functions and constraint function. In this problem, there is only one objective function for the mass. The other objective function gives 1; thus, NSGA-II is used.

Application of the Central Composite Design and Response Surface Methodology to the Treatment of Dye using Electrocoagulation/flotation Process (전기응집/부상 공정을 이용한 염료 처리에 중심합성설계와 반응표면분석법의 적용)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • This experimental design and response surface methodology (RSM) have been applied to the investigation of the electrocoagulation/flotation of dye wastewater. The electrocoagulation/flotation reactions were mathematically described as a function of parameters current (A), NaCl concentration (B), initial RhB concentration (C) and time (D) being modeled by use of the central composite design (CCD). The application of RSM using the CCD yielded the following regression equation, which is an empirical relationship between the RhB removal (%) and test variables in RhB removal (%) = $-300.42+129.21{\cdot}Current+46.99{\cdot}NaCl-0.11{\cdot}RhB-+43.71{\cdot}Time-5.67{\cdot}Current{\cdot}NaCl-3.18{\cdot}Current{\cdot}Time-2.41{\cdot}NaCl{\cdot}Time-19.79{\cdot}Current^2-2.27{\cdot}NaCl^2-1.59{\cdot}Time^2$. the model predictions agreed well with the experimentally observed result ($R^{2}=0.9728$). The estimated ridge of maximum response and optimal conditions for RhB removal (%) using canonical analysis was 99.4% (A: 1,77 A, NaCl concentration: 2.23 g/L, RhB concentration: 56.12 mg/L, Time: 9.98 min). To confirm this optimum condition, three additional experiments were performed and RhB removal (%) were within range of 86.87% (95% PI low)~111.93% (95% PI high) obtained.

Statistical Approach to Development of Culture Medium for Ansamitocin P-3 Production with Actinosynnema pretiosum ATCC 31565

  • BANDI SRINIVASULU;KIM YOON JUNG;SA SOON OK;CHANG YONG-KEUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.930-937
    • /
    • 2005
  • The Plackett-Burman design and the response surface method (RSM) with a central composite design (CCD) were employed to develop a culture medium for ansamitocin P-3 production using Actinosynnema pretiosum ATCC 31565. Among the 11 nutrients tested using the Plackett-Burman design, two carbon sources, sucrose and dextrin, and two nitrogen sources, polypeptone and yeast extract, were selected. Optimization of the concentrations of the selected nutrients was then performed using RSM with CCD. After two rounds of RSM, the optimum concentrations ($\%w/v$) of sucrose, dextrin, polypeptone, and yeast extract were identified as 4.5, 4.5, 0.16, and 0.89, respectively. The maximum ansamitocin P-3 titer was 45.2 mg/l with the optimized medium, which was about 6 times higher than that (7.315 mg/l) obtained with an $R_{2}YE$ medium before optimization.

Approximate Multi-Objective Optimization of Gap Size of PWR Annular Nuclear Fuels (가압경수로용 환형 핵연료의 간극 크기 다중목적 근사최적설계)

  • Doh, Jaehyeok;Kwon, Young Doo;Lee, Jongsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.815-824
    • /
    • 2015
  • In this study, we conducted the approximate multi-objective optimization of gap sizes of pressurized-water reactor (PWR) annular fuels. To determine the contacting tendency of the inner-outer gaps between the annular fuel pellets and cladding, thermoelastic-plastic-creep (TEPC)analysis of PWR annular fuels was performed, using in-house FE code. For the efficient heat transfer at certain levels of stress, we investigated the tensile, compressive hoop stress and temperature, and optimized the gap sizes using the non-dominant sorting genetic algorithm (NSGA-II). For this, response surface models of objective and constraint functions were generated, using central composite (CCD) and D-optimal design. The accuracy of approximate models was evaluated through $R^2$ value. The obtained optimal solutions by NSGA-II were verified through the TEPC analysis, and we compared the obtained optimum solutions and generated errors from the CCD and D-optimal design. We observed that optimum solutions differ, according to design of experiments (DOE) method.

Statistical Optimization of the Growth Factors for Chaetoceros neogracile Using Fractional Factorial Design and Central Composite Design

  • Jeong, Sung-Eun;Park, Jae-Kweon;Kim, Jeong-Dong;Chang, In-Jeong;Hong, Seong-Joo;Kang, Sung-Ho;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1919-1926
    • /
    • 2008
  • Statistical experimental designs; involving (i) a fractional factorial design (FFD) and (ii) a central composite design (CCD) were applied to optimize the culture medium constituents for production of a unique antifreeze protein by the Antartic micro algae Chaetoceros neogracile. The results of the FFD suggested that NaCl, KCl, $MgCl_2$, and ${Na}_{2}{SiO}_{3}$ were significant variables that highly influenced the growth rate and biomass production. The optimum culture medium for the production of an antifreeze protein from C. neogracile was found to be Kalle's artificial seawater, pH of $7.0{\pm}0.5$, consisting of 28.566 g/l of NaCl, 3.887 g/l of $MgCl_2$, 1.787 g/l of $MgSO_4$, 1.308 g/l of $CaSO_4$, 0.832 g/l of ${K_2}{SO_4}$, 0.124 g/l of $CaCO_3$, 0.103 g/l of KBr, 0.0288 g/l of $SrSO_4$, and 0.0282 g/l of ${H_3}{BO_3}$. The antifreeze activity significantly increased after cells were treated with cold shock (at $-5^{\circ}C$) for 14 h. To the best of our knowledge, this is the first report demonstrating an antifreeze-like protein of C. neogracile.

Optimization Studies for the Production of Microbial Transglutaminase from a Newly Isolated Strain of Streptomyces sp.

  • Macedo, Juliana Alves;Sette, Lara Duraes;Sato, Helia Harumi
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.904-911
    • /
    • 2008
  • Covalent cross-links between a number of proteins and peptides explain why transglutaminase may be widely used by food processing industries. The objective of this work was optimization of the fermentation process to produce transglutaminase from a new microbial source, the Streptomyces sp. P20. The strategy adopted to modify the usual literature media was: (1) fractional factorial design (FFD) to elucidate the key medium ingredients, (2) central composite design (CCD) to optimise the concentration of the key components. Optimization of the medium resulted in not only an 86% increase in microbial transglutaminase activity as compared to the media cited in the literature, but also a reduction in the production cost. Optimal fermentation conditions - namely temperature and agitation rate - were also studied, using CCD methodology. Usual conditions of $30^{\circ}C$ and 100 rpm were within the optimal area. All other parameters for enzyme production were experimentally proven to be optimum fermentation conditions.

Approximate Multi-Objective Optimization of Robot Casting Considering Deflection and Weight (처짐과 무게를 고려한 주물 프레임의 다중목적 근사최적설계)

  • Choi, Ha-Young;Lee, Jongsoo;Park, Juno
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.954-960
    • /
    • 2012
  • Nowadays, rapidly changing and unstable global economic environments request a lot of roles to engineers. In this situation, product should be designed to make more profit by cost down and to satisfy distinguished performance comparing to other competitive ones. In this research, the optimization design of the industrial robot casting will be done. The weight and deflection have to be reduced as objective functions and stress has to be constrained under some constant value. To reduce time cost, CCD (Central Composite Design) will be used to make experimental design. And RSM (Response Surface Methodology) will be taken to make regression model for objective functions and constraint function. Finally, optimization will be done with Genetic Algorithm. In this problem, the objective functions are multiple, so NSGA-II which is brilliant and efficient for such a problem will be used. For the solution quality check, the diversity between Pareto solutions will be also checked.

Optimization of Boss Shape for Damage Reduction of the Press-fitted Shaft End (압입축 끝단의 손상저감을 위한 보스부 형상 최적설계)

  • Byon, Sung-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.85-91
    • /
    • 2015
  • The press-fit shaft is an important part used in automobiles, vessels, and trains. This study proposes an optimized design method to reduce damage that may occur in the press-fitted shaft by modifying the shape of the boss step of the press-fitted shaft. To reduce the time and cost of running the optimized design method, an approximate design optimization is applied and an optimized algorithm is generated using a genetic algorithm that is widely used in engineering fields and an approximate model using a response surface method. The planned experiments for the data that are needed to generate the approximate model use a central composite design (CCD) and Latin hypercube sampling (LHS), and the results of the approximate optimization using the above two design of experiments are to be compared.

Emulsification and Stability of Wheat Germ Oil in Water Emulsions: Optimization using CCD-RSM (밀배아유 원료 O/W 유화액의 제조 및 안정성평가: CCD-RSM을 이용한 최적화)

  • Hong, Seheum;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.562-568
    • /
    • 2021
  • An O/W (oil in water) emulsion, wheat germ oil raw material, was produced by using natural wheat germ oil and composite sugar-ester. The effects of variables such as the hydrophile-lipophile balance (HLB) value, added emulsifier amount, and emulsification time on the average particle size, emulsification viscosity and ESI of O/W wheat germ oil emulsion were investigated. The parameters of the emulsification process produced by the central composite design model of the response surface methodology (CCD-RSM), which is a reaction surface analysis method, were simulated and optimized. The optimum process conditions obtained from this paper for the production of O/W wheat germ oil emulsion were 8.4, 6.4 wt%, 25.4 min for the HLB value, amount of emulsifier, and emulsion time, respectively. The predicted reaction values by CCD-RSM model under the optimum conditions were 206 nm, 8125 cP, and 98.2% for mean droplet size (MDS), viscosity, and ESI, respectively, based on the emulsion after 7 days. The MDS, viscosity and ESI of the emulsion obtained from actual experiments were 209 nm, 7974 cP and 98.7%, respectively. Therefore, it was possible to design an optimization process for evaluating the stability of the emulsion of wheat germ oil raw material by CCD-RSM.