• Title/Summary/Keyword: CBR (Case-based reasoning)

Search Result 172, Processing Time 0.159 seconds

Improving Real-Time Efficiency of Case Retrieving Process for Case-Based Reasoning

  • Park, Yoon-Joo
    • Asia pacific journal of information systems
    • /
    • v.25 no.4
    • /
    • pp.626-641
    • /
    • 2015
  • Conventional case-based reasoning (CBR) does not perform efficiently for high-volume datasets because of case retrieval time. To overcome this problem, previous research suggested clustering a case base into several small groups and retrieving neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performance than the conventional CBR. This paper proposes a new case-based reasoning method called the clustering-merging CBR (CM-CBR). The CM-CBR method dynamically indexes a search pool to retrieve neighbors considering the distance between a target case and the centroid of a corresponding cluster. This method is applied to three real-life medical datasets. Results show that the proposed CM-CBR method produces similar or better predictive performance than the conventional CBR and clustering-CBR methods in numerous cases with significantly less computational cost.

A Hybrid Approach Using Case-based Reasoning and Fuzzy Logic for Corporate Bond Rating

  • Kim, Hyun-jung;Shin, Kyung-shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.474-483
    • /
    • 2003
  • A number of studies for corporate bond rating classification problems have demonstrated that artificial intelligence approaches such as Case-based reasoning (CBR) can be alternative methodologies to statistical techniques. CBR is a problem solving technique in that the case specific knowledge of past experience is utilized to find a most similar solution to the new problems. To build a successful CBR system to deal with human information processing, the representation of knowledge of each attribute is an important key factor We propose a hybrid approach of using fuzzy sets that describe the approximate phenomena of the real world because it handles inexact knowledge represented by common linguistic terms in a similar way as human reasoning compared to the other existing techniques. Integration of fuzzy sets with CBR is important to develop effective methods for dealing with vague and incomplete knowledge to statistical represent using membership value of fuzzy sets in CBR.

  • PDF

Integrating Case-Based Reasoning with DSS (DSS와 사례기반 추론의 결합)

  • Kim Jin-Baek
    • Management & Information Systems Review
    • /
    • v.2
    • /
    • pp.169-193
    • /
    • 1998
  • Case- based reasoning(CBR) offers a new approach for developing knowledge based systems. Unlike the rule-based paradigm, in which domain knowledge is encoded in the form of production rules, in the case-based approach the problem solving experience of the domain expert is encoded in the form of cases stored in a casebase(CB). CBR allows a reasoner (1) to propose solutions in domains that are not completely understood by the reasoner, (2) to evaluate solutions when no algorithmic method is available for evaluation, and (3) to interprete open-ended and ill-defined concepts. CBR also helps reasoner (4) take actions to avoid repeating past mistakes, and (5) focus its reasoning on important parts of a problem. Owing to the above advantages, CBR has successfully been applied to many kinds of problems such as design, planning, diagnosis and instruction. In this paper, I propose case-based DSS(CBDSS). CBDSS is an intelligent DSS using CBR technique. CBDSS consists of interface, case-based reasoner, maintainer, casebase management system, domain dependent CB, domain independent CB, and so on.

  • PDF

Case-Based Reasoning Cost Estimation Model Using Two-Step Retrieval Method

  • Lee, Hyun-Soo;Seong, Ki-Hoon;Park, Moon-Seo;Ji, Sae-Hyun;Kim, Soo-Young
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.

An Application of Case-Based Reasoning in Forecasting a Successful Implementation of Enterprise Resource Planning Systems : Focus on Small and Medium sized Enterprises Implementing ERP (성공적인 ERP 시스템 구축 예측을 위한 사례기반추론 응용 : ERP 시스템을 구현한 중소기업을 중심으로)

  • Lim Se-Hun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.1
    • /
    • pp.77-94
    • /
    • 2006
  • Case-based Reasoning (CBR) is widely used in business and industry prediction. It is suitable to solve complex and unstructured business problems. Recently, the prediction accuracy of CBR has been enhanced by not only various machine learning algorithms such as genetic algorithms, relative weighting of Artificial Neural Network (ANN) input variable but also data mining technique such as feature selection, feature weighting, feature transformation, and instance selection As a result, CBR is even more widely used today in business area. In this study, we investigated the usefulness of the CBR method in forecasting success in implementing ERP systems. We used a CBR method based on the feature weighting technique to compare the performance of three different models : MDA (Multiple Discriminant Analysis), GECBR (GEneral CBR), FWCBR (CBR with Feature Weighting supported by Analytic Hierarchy Process). The study suggests that the FWCBR approach is a promising method for forecasting of successful ERP implementation in Small and Medium sized Enterprises.

  • PDF

Two-Step Filtering Datamining Method Integrating Case-Based Reasoning and Rule Induction

  • Park, Yoon-Joo;Chol, En-Mi;Park, Soo-Hyun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.329-337
    • /
    • 2007
  • Case-based reasoning (CBR) methods are applied to various target problems on the supposition that previous cases are sufficiently similar to current target problems, and the results of previous similar cases support the same result consistently. However, these assumptions are not applicable for some target cases. There are some target cases that have no sufficiently similar cases, or if they have, the results of these previous cases are inconsistent. That is, the appropriateness of CBR is different for each target case, even though they are problems in the same domain. Thus, applying CBR to whole datasets in a domain is not reasonable. This paper presents a new hybrid datamining technique called two-step filtering CBR and Rule Induction (TSFCR), which dynamically selects either CBR or RI for each target case, taking into consideration similarities and consistencies of previous cases. We apply this method to three medical diagnosis datasets and one credit analysis dataset in order to demonstrate that TSFCR outperforms the genuine CBR and RI.

  • PDF

Financial Forecasting System using Data Editing Technique and Case-based Reasoning (자료편집기법과 사례기반추론을 이용한 재무예측시스템)

  • Kim, Gyeong-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.283-286
    • /
    • 2007
  • This paper proposes a genetic algorithm (GA) approach to instance selection in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in complex problem solving. Nonetheless, compared to other machine learning techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However, designing a good matching and retrieval mechanism for CBR systems is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for instance selection in CBR.

  • PDF

Toward global optimization of case-based reasoning for the prediction of stock price index

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.399-408
    • /
    • 2001
  • This paper presents a simultaneous optimization approach of case-based reasoning (CBR) using a genetic algorithm(GA) for the prediction of stock price index. Prior research suggested many hybrid models of CBR and the GA for selecting a relevant feature subset or optimizing feature weights. Most studies, however, used the GA for improving only a part of architectural factors for the CBR system. However, the performance of CBR may be enhanced when these factors are simultaneously considered. In this study, the GA simultaneously optimizes multiple factors of the CBR system. Experimental results show that a GA approach to simultaneous optimization of CBR outperforms other conventional approaches for the prediction of stock price index.

  • PDF

A METHOD OF REVISING RETRIEVED SIMILAR CASES IN GA-CBR COST MODELS

  • Sooyoung Kim;Hyun-Soo Lee;Moonseo Park;Sae-Hyun Ji;Joseph Ahn
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.182-186
    • /
    • 2011
  • Early cost estimates are important to decision-making for a construction project. Moreover, the possibility of reducing the project cost is getting less as the project is progressed. Case-based reasoning (CBR), which can be viewed as an effective method for early cost estimating, is widely utilized recently. Early cost estimates using CBR have advantages over the traditional ones as they produce reasonable outputs and self-studying is possible by simply adding new cases. Case-based reasoning is composed of a cycle of retrieve, reuse, revise, and retain process. However, in the majority of research cases, they are focused on how to retrieve the similar cases, instead of revising the cases which is expected to increase accuracy results of cost estimation. This research suggests a method of revising retrieved similar cases in a GA-CBR cost model which is widely studied and utilized for early cost estimating recently. To validate the proposed method, case study is conducted based on Korean public apartment projects.

  • PDF

Web Recommendation Mechanism Based on Case-Based Reasoning and Web Data Mining

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.443-446
    • /
    • 2002
  • In this research, we suggest a Web-based hybrid recommendation mechanism using CBR (Case-Based Reasoning) and web data mining. Data mining is used as an efficient mechanism in reasoning for relationship between goods, customers' preference and future behavior. CBR systems are normally used in problems for which it is difficult to define rules. We use CBR as an AI tool to recommend the similar purchase case. A Web-log data gathered in real-world Internet shopping mall was given to illustrate the quality of the proposed mechanism. The results showed that the CBR and web data mining-based hybrid recommendation mechanism could reflect both association knowledge and purchase information about our former customers.