• Title/Summary/Keyword: CBIR(Content Based Image Retrieval)

Search Result 87, Processing Time 0.022 seconds

Content-Based Image Retrieval using Third Order Color Object Relation (3차 칼라 객체 관계에 의한 내용 기반 영상 검색)

  • Kwon, Hee-Yong;Choi, Je-Woo;Lee, In-Heang;Cho, Dong-Sub;Hwang, Hee-Yeung
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.62-73
    • /
    • 2000
  • In this paper, we propose a criteria which can be applied to classify conventional color feature based Content Based Image Retrieval (CBIR) methods with its application areas, and a new image retrieval method which can represent sufficient spatial information in the image and is powerful in invariant searching to translation, rotation and enlargement transform. As the conventional color feature based CBIR methods can not sufficiently include the spatial information in the image, in general, they have drawbacks, which are weak to the translation or rotation, enlargement transform. To solve it, they have represented the spatial information by partitioning the image. Retrieval efficiency, however, is decreased rapidly as increasing the number of the feature vectors. We classify conventional methods to ones using 1st order relations and ones using 2nd order relations as their color object relation, and propose a new method using 3rd order relation of color objects which is good for the translation, rotation and enlargement transform. It makes quantized 24 buckets and selects 3 high scored histogram buckets and calculates 3 mean positions of pixels in 3 buckets and 3 angles. Then, it uses them as feature vectors of a given image. Experiments show that the proposed method is especially good at enlarged images and effective for its small calculation.

  • PDF

Image Retrieval using Contents and Location of Multiple Region-of-Interest (다중 관심영역의 내용과 위치를 이용한 이미지 검색)

  • Lee, Jong-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.355-358
    • /
    • 2011
  • 본 논문에서는 이미지에서 사용자가 관심을 갖는 영역(ROI)의 내용을 나타내는 특성값과 영역의 위치를 함께 고려하여 이미지를 검색하는 방법을 제안한다. 제안한 방법은 검색 대상 이미지를 일정 크기의 블록으로 구분한 후 사용자가 선택한 다중 ROI와 가장 근접하는 특성을 가진 블록을 선택한다. 블록의 특성값은 MPEG-7의 도미넌트 컬러 기술자를 사용한다. 사용자가 선택한 블록의 특성값과 함께 블록의 위치를 측정한 후, 검색 대상 이미지의 블록들의 특성값 및 위치와 비교하여 유사도를 측정한다. 본 논문에서는 실험결과 제안한 방법이 전역 이미지 검색이나 동일한 위치의 블록만 비교하는 경우보다 다중 ROI의 내용과 위치를 함께 고려하는 방법이 다른 방법에 비해 우수한 성능을 나타냈다.

  • PDF

A Feature Re-weighting Approach for the Non-Metric Feature Space (가변적인 길이의 특성 정보를 지원하는 특성 가중치 조정 기법)

  • Lee Robert-Samuel;Kim Sang-Hee;Park Ho-Hyun;Lee Seok-Lyong;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.372-383
    • /
    • 2006
  • Among the approaches to image database management, content-based image retrieval (CBIR) is viewed as having the best support for effective searching and browsing of large digital image libraries. Typical CBIR systems allow a user to provide a query image, from which low-level features are extracted and used to find 'similar' images in a database. However, there exists the semantic gap between human visual perception and low-level representations. An effective methodology for overcoming this semantic gap involves relevance feedback to perform feature re-weighting. Current approaches to feature re-weighting require the number of components for a feature representation to be the same for every image in consideration. Following this assumption, they map each component to an axis in the n-dimensional space, which we call the metric space; likewise the feature representation is stored in a fixed-length vector. However, with the emergence of features that do not have a fixed number of components in their representation, existing feature re-weighting approaches are invalidated. In this paper we propose a feature re-weighting technique that supports features regardless of whether or not they can be mapped into a metric space. Our approach analyses the feature distances calculated between the query image and the images in the database. Two-sided confidence intervals are used with the distances to obtain the information for feature re-weighting. There is no restriction on how the distances are calculated for each feature. This provides freedom for how feature representations are structured, i.e. there is no requirement for features to be represented in fixed-length vectors or metric space. Our experimental results show the effectiveness of our approach and in a comparison with other work, we can see how it outperforms previous work.

A Relevance Feedback Method Using Threshold Value and Pre-Fetching (경계 값과 pre-fetching을 이용한 적합성 피드백 기법)

  • Park Min-Su;Hwang Byung-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.9
    • /
    • pp.1312-1320
    • /
    • 2004
  • Recently, even if a lot of visual feature representations have been studied and systems have been built, there is a limit to existing content-based image retrieval mechanism in its availability. One of the limits is the gap between a user's high-level concepts and a system's low-level features. And human beings' subjectivity in perceiving similarity is excluded. Therefore, correct visual information delivery and a method that can retrieve the data efficiently are required. Relevance feedback can increase the efficiency of image retrieval because it responds of a user's information needs in multimedia retrieval. This paper proposes an efficient CBIR introducing positive and negative relevance feedback with threshold value and pre-fetching to improve the performance of conventional relevance feedback mechanisms. With this Proposed feedback strategy, we implement an image retrieval system that improves the conventional retrieval system.

  • PDF

Image Feature Extraction using Genetic Algorithm (유전자 알고리즘을 이용한 영상 특징 추출)

  • Park, Sang-Sung;A, Dong-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2006
  • Multimedia data is increasing rapidly by development of computer Information technology. Specially, quick and accurate processing of image data is required in image retrieval field. But it is difficult to guarantee both quickness and accuracy. This article suggests the algorithm that extracts representative features of image using genetic algorithm to solve this problem. This algorithm guarantees quickness and accuracy of retrieval by extracting representative features of image. We used color and texture as feature of image. Experiment shows that feature extracting method that is proposed is more accurate than existing study. So this study establishes propriety of method that is proposed.

  • PDF

Image Classification Approach for Improving CBIR System Performance (콘텐트 기반의 이미지검색을 위한 분류기 접근방법)

  • Han, Woo-Jin;Sohn, Kyung-Ah
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.816-822
    • /
    • 2016
  • Content-Based image retrieval is a method to search by image features such as local color, texture, and other image content information, which is different from conventional tag or labeled text-based searching. In real life data, the number of images having tags or labels is relatively small, so it is hard to search the relevant images with text-based approach. Existing image search method only based on image feature similarity has limited performance and does not ensure that the results are what the user expected. In this study, we propose and validate a machine learning based approach to improve the performance of the image search engine. We note that when users search relevant images with a query image, they would expect the retrieved images belong to the same category as that of the query. Image classification method is combined with the traditional image feature similarity method. The proposed method is extensively validated on a public PASCAL VOC dataset consisting of 11,530 images from 20 categories.

Robust Similarity Retrieval for Radial Distortion of Object Shape Based on the Normalized Phase Angles and Moment

  • An, Young Eun;Kim, Tae Yeun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • In the content-based image search properties, form information is simple because only the contours of objects are available, and although it can effectively extract the characteristics of the objects, it is sensitive to external noise. The radial distortion, one of these noises, is most prominent in the eyewear and, due to the structural characteristics of the imaging equipment, radiative distortion occurs in almost all imaging equipment. It is very important to determine the similarity of the objects in the images in which these distortions occurred to the actual objects. In order to improve this problem, we propose a strong image search technique for formative noise and radiative distortion using regularization phase angles and moments. Through simulation using Wang DB, the proposed algorithm proved excellent performance for radiation distortion that occurs in general. In addition, a system optimized for database can be implemented by making appropriate changes to the threshold values, enabling image retrieval with the desired level of confidence in various systems. The algorithm proposed in this paper is expected to be utilized as an optimal imaging system by extracting morphological form information of multimedia data.

A Combined Hough Transform based Edge Detection and Region Growing Method for Region Extraction (영역 추출을 위한 Hough 변환 기반 에지 검출과 영역 확장을 통합한 방법)

  • N.T.B., Nguyen;Kim, Yong-Kwon;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.263-279
    • /
    • 2009
  • Shape features in a content-based image retrieval (CBIR) system are divided into two classes: contour-based and region-based. Contour-based shape features are simple but they are not as efficient as region-based shape features. Most systems using the region-based shape feature have to extract the region firs t. The prior works on region-based systems still have shortcomings. They are complex to implement, particularly with respect to region extraction, and do not sufficiently use the spatial relationship between regions in the distance model In this paper, a region extraction method that is the combination of an edge-based method and a region growing method is proposed to accurately extract regions inside an object. Edges inside an object are accurately detected based on the Canny edge detector and the Hough transform. And the modified Integrated Region Matching (IRM) scheme which includes the adjacency relationship of regions is also proposed. It is used to compute the distance between images for the similarity search using shape features. The experimental results show the effectiveness of our region extraction method as well as the modified IRM. In comparison with other works, it is shown that the new region extraction method outperforms others.

Image Retrieval Using Spacial Color Correlation and Local Texture Characteristics (칼라의 공간적 상관관계 및 국부 질감 특성을 이용한 영상검색)

  • Sung, Joong-Ki;Chun, Young-Deok;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.103-114
    • /
    • 2005
  • This paper presents a content-based image retrieval (CBIR) method using the combination of color and texture features. As a color feature, a color autocorrelogram is chosen which is extracted from the hue and saturation components of a color image. As a texture feature, BDIP(block difference of inverse probabilities) and BVLC(block variation of local correlation coefficients) are chosen which are extracted from the value component. When the features are extracted, the color autocorrelogram and the BVLC are simplified in consideration of their calculation complexity. After the feature extraction, vector components of these features are efficiently quantized in consideration of their storage space. Experiments for Corel and VisTex DBs show that the proposed retrieval method yields 9.5% maximum precision gain over the method using only the color autucorrelogram and 4.0% over the BDIP-BVLC. Also, the proposed method yields 12.6%, 14.6%, and 27.9% maximum precision gains over the methods using wavelet moments, CSD, and color histogram, respectively.

Clipart Image Retrieval System using Shape Information (모양 정보를 이용한 클립아트 이미지 검색 시스템)

  • Cheong, Seong-Il;Kim, Seung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.116-125
    • /
    • 2002
  • This paper presented a method of extracting shape information from a clipart image and then measured the similarity between clipart images using the extracted shape information. The results indicated that the outlines of the extracted clipart images were clearer that those of the original images. Previous methods of extracting shape information could be classified into outline-based methods and region-based methods. Included in the former category, the proposed method expressed the convex and concave aspects of an outline using the ratio of a rectangle. Accordingly, the proposed method was superior in expressing shape information than previous outline-based feature methods.