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Abstract Among the approaches to image database management, content-based image retrieval
(CBIR) is viewed as having the best support for effective searching and browsing of large digital
image libraries. Typical CBIR systems allow a user to provide a query image, from which low-level
features are extracted and used to find “similar” images in a database. However, there exists the
semantic gap between human visual perception and low-level representations. An effective
methodology for overcoming this semantic gap involves relevance feedback to perform feature
re-weighting. Current approaches to feature re~weighting require the number of components for a
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feature representation to be the same for every image in consideration. Following this assumption, they
map each component to an axis in the n—dimensional space, which we call the metric space; likewise
the feature representation is stored in a fixed-length vector. However, with the emergence of features
that do not have a fixed number of components in their representation, existing feature re-weighting

approaches are invalidated.

In this paper we propose a feature re-weighting technique that supports features regardless of
whether or not they can be mapped into a metric space. Our approach analyses the feature distances
calculated between the query image and the images in the database. Two-sided confidence intervals are
used with the distances to obtain the information for feature re-weighting. There is no restriction on
how the distances are calculated for each feature. This provides freedom for how feature representations

are structured, ie. there is no requirement for features to be represented in fixed-length vectors or

metric space. Our experimental results show the effectiveness of our approach and in a comparison with

other work, we can see how it outperforms previous work.

Key words :

1.M2

The simplicity in generating digital images has
led to the point where the management of the
growing collections of images is no long a simple
manual task. This is not limited to individuals, but
includes businesses as well. This trend has led to

the emergence of numerous repositories for the

storage, organization, and distribution of such
images.
Although research on content-based image

retrieval (CBIR) has been active since the early
1990s, the approach is still considered to be in its
infancy. Nonetheless, it is considered to best
support effective searching and browsing of large
digital image libraries.

a CBIR

requires the user provide a query image. The sys-

Searching for images with system
tem obtains a low-level description of the image,
which it then uses to compare to the low-level
descriptions of the images in the database.
However, the performance of CBIR is still impeded
by the semantic gap between the high-level user
concept and low-level representation. For example,
if a user provides an image of a green apple as a
query, the system could return images of tennis
balls, lily pads, turtles, etc., when using colour
features.

One approach to overcome this shortcoming is to
incorporate the use of numerous features; enough to
ensure that every visual semantic of the image
contents can be captured. Although a system may

utilize all the features describing the images over a

content-based image retrieval, relevance feedback, feature re-weighting, shape features

set of queries, the use of one feature may better
identify similar images for a given query image,
whereas another feature may better identify similar
images for a different query image.

Relevance feedback has become an effective
methodology for bridging the semantic gap.
Incorporating relevance feedback into CBIR systems
leads to an image search becoming an interactive
session. The system utilizes user feedback to
update the feature weights and retrieve a new set
of results that is better than the previous result
set. Following the scenario above, assume a user
provides an image of a green apple as a query and
the system uses both color and shape features.
With all the features equally weighted, the system
returns images of red and green apples, tennis
balls, lily pads and frogs. The user then marks the
images of the apples as being relevant and requests
a new set of images. The system uses this
feedback to update the feature weights and returns
a new set of results that should now contain more
apple images and fewer non-apple images.

Current techniques[1-6] have a shortcoming. They
require the number of components for each feature
representation to be the same among all images.
of the

images displayed to the user are analysed to obtain

The corresponding - feature components
the feature re-weighting information. Also, these
feature components must be mapped to an axis in
the n-dimensional space (metric space) for distance
calculation. Having done so, the weighted Euclidean
distance is used to compute the distance between
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the features for each image.

Until recently, colour and texture features were
most widely used to describe image content. Colour
features are generally represented using histograms,
where the components would be the frequency of
each bin. Thus, using the colour feature is sup-
ported with existing feature re-weighting approa-
ches since the number of bins would be the same
for the colour histogram of each image. However,
colour and texture features are not always suc-
cessful in capturing visual concepts. Weather (e.g.
snow coverage) and lighting are some factors in
the effectiveness of colour and texture features.
With
high-level

the development of shape features and

features that incorporate the spatial
relations of objects within an image, the assump-
tion that the number of components for a feature
representation is the same for all images is no
longer valid. Examples of such features are
Curvature Scale Space (CSS) [7], and 9D-SPA [8].
The CSS feature represents the maxima of the
zero—crossing points of a contour. The number of
maxima increases with the complexity of a contour,
e.g., an ellipse would have 0 maxima and a
star-like
9D-SPA represents the spatial relations between
Thus, the

in a 9D-SPA representation differs

contour would have many maxima.

objects in an image. number of
components
between images with different numbers of objects.
Since the feature representations may not have
corresponding components between images, it is no
longer possible to compare images for each feature
component to obtain feature re-weighting information.
Likewise, the feature components can no longer be
mapped to corresponding axes in the metric space,
thus invalidating the use of the weighted Euclidean
distance.

To support feature re-weighting for such fea-
tures, we do not compare images for each feature
component. Instead, we analyze the value of the
distances that are calculated with each feature’s
own distance function. By analysing the distances,
there is no restriction placed on the structure of
the components of a feature. In addition, there is
no requirement for feature components to be

mapped to a metric space to calculate the dis—

tances; there is complete freedom in the distance

function used for a given feature. The proposed

feature re-weighting technique displays the follow-—
ing characteristics:

» Support for features regardless of whether or not
they can be mapped to an n-dimensional space
(metric space). The combination of features used
for the experiments shows that it can effectively
handle features regardless of whether or not they
have the same number of components between
images and can be mapped to a metric space.

» Effective mapping of visual similarity to low-
level features. On the average, the recall of the
proposed approach was better than an existing
approach by 98% at the ond iteration, 50% by the
5% iteration, 45% for the 10™ iteration, and 42%
for the 20" iteration of retrieval.

The remainder of this paper is organized as
follows. Section 2 provides an overview of the
research background by providing a description of
CBIR

re-weighting, and related work. In Section 3 we

systems, the current view of feature
cover the proposed feature re-weighting technique.
Then in Section 4 we show its effectiveness with
the experimental results. A conclusion is provided

in Section 5.

2. Research Background

2.4 CBIR Systems

The two main functions of a CBIR system are
image storage and image search. Figure 1 shows a
CBIR

systems. For storage, images are first segmented.

general architectural diagram for typical
At this stage, regions or objects are identified
within the

passed to the

image. Segmented images are then

feature extractor. The feature
extractor extracts the feature data for each object
detected in the image. This data is then passed to
a data manager which stores the feature data and
the image into a database. For image search, the
user provides an image for the query. This image
is segmented and features are extracted. The
distance calculator then compares the feature data
of the query image to the feature data in the
database. The closest matches are then displayed to

the user.



Feature Extractor Distance Calculator
- Data Manage -

S ——
Database

Fig. 1 Architecture of CBIR Systems

2.2 Relevance Feedback

Relevance feedback techniques eliminate from the
user the responsibility of having to determine the
important features for a given query by automati-
cally updating the feature weights. This is required
as a user should not be expected to have prior
knowledge of the image collection. Updated feature
weights are used for each of retrieval iteration.
This cycle continues until the resulting set of
images ceases to change (i.e. convergence) or the
user is satisfied with the results. Take note, the
relevance feedback mechanisms are used starting
from the second retrieval iteration, once the system
receives feedback from the user.

Existing feature re-weighting techniques are
becoming invalidated with the development of new
feature representations because they have the follo-
wing view on feature re-weighting.

If a feature is made up of n components, then
the feature component values of each image can be

mapped to a metric space. Initially, the scale of
component Y

A

X

O
query point

component X

(a)
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each axis is equal. With each iteration of relevance
feedback, the axes can be scaled by shrinking the
more important feature component axes and expan-
ding the less important feature component axes.
Take for example Figure 2. In (a) we see the
initial plot of the feature components for some
feature of image A and image B. From the user
feedback, the
y-component of the feature is less important than

system  determines that the
the x-component. The system uses this feedback to
update the feature space. Since the x-—component is
more important, its axis is compressed. The oppo-
site occurs for the axis corresponding to y-compo-
nent. It is found to be less important in
determining similarity and is thus stretched. The
result of the changes to the feature space is shown
in (b). With the scaling of the axes, the point
corresponding to image B is brought closer to the
query point.

Notice that the effect illustrated with Figure 2
assumes that the feature in consideration has
exactly 2 components for both image A and B.
However, considering features such as CSS, the
number of feature components extracted from each
image may differ. Thus, approaches that assume
feature data can be mapped to a metric space do
not support such features.

2.3 Related Work

Although research in CBIR is still considered to
be in its infancy, there exists a great deal of prior
work. The first commercial CBIR system to be
developed is IBM's QBIC [9] which allows a user
to search for images using colour, texture, shape

and text. VisualSEEk [10] introduced the identifi-
component Y

A
X

B
O
query point

component X

(b)

Figure 2 Effect of Feature Re-weighting
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cation of regions and objects within an image,
which provided
retrieval compared to using global features. Since

significant gains in similarity
then, systems that demonstrate improved segmen-
tation, feature extraction, distance calculation, and
indexing techniques have been developed. However,
none of those systems can overcome the semantic
gap without the use of relevance feedback.

MARS {1,2] proposes a method where the top k
results are returned to the user and the feedback is
used to refine the feature weights using both the
variance in feature values and set intersection. The
most cited approach to re-weighting features is
in MARS and has been applied in
numerous other CBIR systems. In their model they

proposed

assume a feature representation is comprised of
multiple components. Thus, a feature representation
can be thought of as a vector of real values (e.g.
color histogram). Their model is illustrated in
Figure 3.

The W;: correspond to the weight for a feature
and the wy are the weights corresponding to the
feature components that comprise feature i. For
each of level in the model, a different re-weighting
technique is performed. At the representation level,
the weight for the jth feature component of the "
feature representation is updated to the inverse of

the standard deviation of the component values

. . i
from the relevant images, i.e., Oy .

Total Distance

N

w, Wi

/N

Wi Wim Wiq Win

Figure 3 Feature Weighting Model of MARS

Feature Leve!

Representation Level

When each feature component weight has been
updated, they are normalized by total weight to
make them sum to 1. These weights are then
placed in a diagonal matrix W so that the distance
for feature i can be calculated using the weighted
Euclidean distance as follows:

S
feature distance; = (g-fY Wig-1)
where 9i contains the feature component values

for the query image and fi contains the feature
component values for an image in the database.
Note that this level of re-weighting assumes that
the feature representation can be mapped to a
More

assumes that the number of components j for each

metric  space. specifically, this approach

feature representation, is the same among all
images. However, as mentioned previously, with
features such as CSS, this is not valid.

Updating the weight for each feature is consi-
dered inter-feature re-weighting. These weights
reflect the emphasis of a feature representation in
the overall distance comparisons. For each iteration
of retrieval, the set of returned images is compared
to the sets of similar images with respect to each
individual feature.

Let S and S;, where i =

the sets of k most similar images determined using

1, .., # of features, be

the all features combined, and distance based on
only feature i, respectively:

S = [img1, -, imgxl

S = [imgy, -, img]

Scores are assigned to the retrieved images,
those in set S, by the user. The scoring scheme is
set arbitrarily, where the score is based on the
amount of relevance. To update the weight for
feature i, W; is first initialized to 0. The following
procedure is then performed.

for x = 1 to k

if (img. exists in S)
W; = W; + score

The inter-feature re-weighting process involves
performing an intersection of set S with each set
Si. The scores assigned to the images in the
intersection are then summed. Having done so, the
resulting weights (W/s) are normalized by total
weight to sum to 1. The feature distances are
multiplied by the respective W{s to obtain the
overall distance.

One inherent problem with the MARS approach
is that a large number of relevant images are

required in the retrieved set for there to be any
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substantial amount of refinement in the feature
In addition,
inter-feature re-weighting is determined arbitrarily.

weighting. the scoring scheme for
Also, the information obtained to re-weight the
features is limited to the size of the intersections in
the As
previously, re-weighting

set infersection procedure. mentioned
the

assumes the feature data can be mapped to metric

intra—feature also

space and that each image has corresponding
feature components.

The approach proposed in [3] uses the same
feature weighting model and distance calculation as
MARS. However, its
the use of non-relevant

process of intra—feature

includes images. A
discriminant ratio (drj) is used to determine the
ability of component j of feature [ in separating
non-relevant and relevant images and is defined as

follows:

m
or(f_nonfrel,l)

m
fnonAreI,l
i
=1

where m is the number of non-relevant images

dr. =1

¥

and or(fy"™ ") is the value of the /' component of
the /™ non-relevant image that is outside the range
of values for the jth component of relevant images,
and 0 otherwise. The weight wj; for the jth
component of the i feature representation is then
determined as follows:

dr,

-— )
Wy = o
i

! is the standard deviation of the ;&

component of the i

where ¢,
feature among the relevant
images. The inter-feature re-weighting, or determi-
nation of the weights for each feature, is performed
using the following equation.

X 10
wi=Y |Z&

where K is the number of features and J« is the
total distance between the &™ feature of the query
image and those of the relevant images.

Other recent work, including iPure [4], Mind-
Reader [5], and [6] also propose methods of feature
re-weighting. However, their approaches are fully
dependent on the assumption that the feature vector

i

A 93t

i
A
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for all images must be of the same length. These
approaches are invalidated by features that do not
have a fixed number of feature components bet-
ween images.

The distance calculation for CSS cannot be
calculated by mapping its components to the metric
space and then using a function such as the
weighted Euclidean distance since the number of
CSS peaks may differ between images. Instead, the
set of peaks for the two images being compared
are obtained, then a matching algorithm is perfor-
med to find the differences between the set of
peaks. For more details please refer to [7]. We
mention CSS as an example of a feature that
cannot be mapped to the metric space because it is
part of the MPEG-7 standard [11].

3. Proposed Feature Re-weighting Approach

In this section, the proposed relevance feedback
mechanism for improving image retrieval is pre-
sented. But first,
described to provide insight into how the images

the distance model will be
are evaluated to determine their similarity to the
query image.

3.1 Distance Model

Figure 4 illustrates the model used to determine
the distance value between a query object and
target object. d(query, DBimage;) represents the
distance function for a given feature.

Each of these distances is associated with a
the
better the feature is at identifying the visual simi-
the higher the weight.

These features weights are normalized to sum to

corresponding weight. As mentioned before,

larity between images,
one. The distances calculated for each feature are
multiplied by their associated weight, and then they
are all summed to obtain the overall distance value.
In effect, the distance between the query image and
an image in the database is defined as

overall distance

di(query,DBimage) I

dz(query,DBimagl II(query,DBimage)

Figure 4 Distance Model
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w; -d, (que ,DBima e
overall distance = zl ;- d, (query ge)

where n is the number of features and ®; and
di(query, DBimage) are the feature weight and
distance function for feature i.

Since the distance values for different feature
representations are not of comparable magnitudes, the
distances, with respect to each feature, are divided by
the maximum distance calculated between the query
image and the images in the database. As a result,
the distance values will be in the range [0, 1] and the
overall distance will be in the range of [0, n), where
n is the number of features.

The benefit of this distance model is the freedom
it provides in how distances are calculated; there is
no restriction on how the distances for each feature
are calculated. As a result, there is freedom in the
data structures used to represent the features and
their associated similarity measures. Features such
as CSS, 9D-SPA, and high-level features incor-
porating spatial relations are all supported.

3.2 Feature Re-weighting via Two-sided Confidence

Intervals

The sets of relevant images and non-relevant
images obtained from user feedback provide the
information to update the weights of features by
two-sided

Confidence intervals are used to approximate the

means of confidence intervals [12].
difference between two population proportions, p(A)
and p(B), based on two independent samples of
size n and m with sample proportions p'(4) and
p(B). The bounds of a two-sided confidence are

calculated as follows:
Equation 1: p(4)- p(B) € (Ib,ub)
Equation 2:

PA)-A-pA)  p'B)-(1-p(B)

n m

ib =p'(A)—p'(B)—Z%J

Equation 3:

wb = (M) ”'(B)“%vlpuy(ln N p'(B)-(in —P'(B)

In Equations 2 and 3, z4/2 is the confidence
coefficient that is dependent on the desired con-
fidence. The choice of the confidence coefficient is
arbitrary.

The proposed re-weighting technique is based on

the use of two-sided confidence intervals to app-

roximate the difference between the feature
distances for the sets of relevant and non-relevant
images. '

The user provides a query image for which the
system must retrieve the top-k similar images in
the database. However, the images considered most
similar with regards to the calculated distances
may mnot respect the user's perspective of visual
similarity. With respect to each feature i indivi-
dually, it is not possible to determine the average
distance for relevant images for all the images in
the database, which we will denote as di(rel), and
the same for non-relevant images, which we will
denote as di(non-rel), since the user cannot be
expected to check every image contained in the
database. By means of user feedback on the

returned images, the system can calculate the
average feature { distance for relevant and non-
relevant images in the returned set, which will be
represented by d’i(rel) and d’inon-rel). Using the
values d’i(rel) and d'i(non-rel), the range for the
difference between di(rel) and di(non-rel) can be
approximated using two-sided confidence intervals.

The bounds of a two-sided confidence for feature

re-weighting are calculated as follows:

Equation 4: d (rel)—d ,(non—rel) e (Ib,ub)

. b=d"' -d' - -
Equation 5: Ib=d' (rel)—d', (non—rel)

d', (rel)-(1-d', (rel)) . d'; (non—rel)-(1-d', (non—rel))
% n m

Equation 6 “2=91eh~d\(non=rel)+

2 \/:z", (rel)-(1~d'; (rel)) . d', (non—rel)-(1-d', (non~rel))
% b m

As mentioned previously, z4/2 is the confidence
coefficient corresponding to the confidence interval
desired. n is the number of images marked relevant
and m is the number of images considered
non-relevant (ie. m=k-n). Again, for the difference
between the average feature distance for relevant
images and non-relevant images, the confidence
interval must lie somewhere in the range [-1, 1]
since the distances have been normalized to a

maximum value of 1.
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Confidence intervals are calculated for each fea—
ture. The location of the confidence interval determines
how the feature will be re-weighted. Observing the
location of the upper and lower bounds, one of the
following cases will arise:

«If both the upper bound and lower bound are
greater than 0, then the approximate average
feature distance for all relevant objects in the
database, for the feature under consideration, is
greater than that for the non-relevant images. As
a result, one can infer that this feature does not
appropriately capture visual similarities for this
query and its weight is set to 0.

If the bounds straddle 0, that is, if the upper bound

is positive and the lower bound is negative, one

can infer that the feature is somewhat good, but
cannot fully distinguish relevant images from those
that are non-relevant. In this case, the feature
weight is set to the ratio of the length of the
negative portion of the interval and total length of
the interval. The further the confidence interval
slides into the negative range, the better the
feature must be at distinguishing relevant images
from non-relevant images.

If both the upper bound and lower bound are less
than 0, than the approximate average feature
distance for all relevant images in the database is
smaller that that for the non-relevant images.
Thus, one can infer this feature successfully
distinguishes visual similarities and the feature
weight is determined using Equation 7. As in the
previous case, the further negative the confidence
interval is, the better the feature can distinguish
the visual similarity. Thus, the upper bound is
placed in the numerator to reflect this charac-
teristic. Likewise, the closer the lower bound
approaches -1, it the better the feature. Thus, |6
is placed in the denominator. Finally, the boun-—
dary condition where the upper bound is 0 must
be considered. The feature weight must be equal
to that when the upper bound is 0 for the
previous case. In the previous case, when the
upper bound is 0, the feature weight is set to 1.
Thus, we add the constant 1.

Equation 7: feature weight = 1-]/b|

Jm
o
oX
i
i
X
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Having obtained the updated weight for each
feature, the feature weights are normalized by total
weight.

From the first iteration of retrieval, the system
has only the single set of feedback to update the
weights. When the feature weights are updated, the
next iteration of retrieval may return a different set
of images. However, for the following iterations, the
information from the images returned in the previous
iterations can be used as well. The following is a
description of the notation that will be used to
describe the images that are used to obtain the
distance information for feature re~ weighting.

k : the number of iterations of retrieval

Ry : the set of images returned in the k™ iteration

R : the relevant images from the k™ iteration

R™™ : the non-relevant images from the k™

iteration
R : the set of unique images that have been

returned up to the k™ iteration
Re"™ ™™ : the set of unique images identified as
relevant in the k iterations
Rimenen el - the set of unique images identified as
non-relevant in the k iterations
Take note ' Rk = R™ U R ™

unigue unique,rel unique,non-rel
R = R™ U R¢™ ,

unique _
Ri = Ry,
Rlunique,rel - erel, and
Rlunique,non—rel - Rlnon*rel

Then for iterations k+l, where k > 0, Rie1™™
and Ri"em" ™ are defined as follows.

Rkﬂunique — Rk+1 U Rkunique

Rk 1unique,rel — Rk 1rel U Rkunique,rel

Rk'lunique,non-rel - denonfrel U Rkunique,nonArel

Thus, to incorporate the information obtained
from the previous retrieval iterations for feature re-
weighting, the images in Res™ ™™ and Ry, 2auenonrel
are used to calculate the confidence intervals at the
(k+1)™ iteration. More specifically, when using
Equations 5 and 6 to update the weights at the
(k+1)™ iteration, d’(rel) and di(non-rel) are now
obtained using the feature distances for the images
in Reed™ ™ and R ™" respectively. Also,
n now corresponds to the number of images in

ique,rel
Rio™™ and m corresponds to the number of

images in Ry, maenonrel
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4. Experimentation

In this section, the experimental results are pre-
sented to demonstrate the effectiveness of the
proposed feature re-weighting technique. In addi-
tion, the retrieval performance of our approach is
compared to that of MARS and [3] (DD) since
their inter-feature re-weighting techniques can be
applied to features that cannot be mapped into the
metric space.

4.1 Experimental Environment & Prototype System

The experimentation was performed on the
Windows platform powered by a Pentiumd 2.6GHz
CPU using 512MB of RAM. The prototype system
is implemented using C++ and the NET frame-
work. Images and their associated feature data are
stored to an Oracle 10g database located remotely.
The features used to describe the images include
Polar Projections {131, CSS [7], eccentricity, com-
pactness, perimeter, and circularity. A screenshot of
the experimental system is provided in Figure 5.
The query image is displayed in the top left corner
of the window. The images below are the top-k
images retrieved from the database. The images
are ranked based on distance, where the top-left
image has the smallest distance and increase from
left to right, top to bottom. The user identifies the
relevant images among the result images by
clicking on them, and then clicks the button to the
right of the query image to update the feature
weights and obtain the next set of results.

4.2 Experimental Results

In each of the experimental comparisons, any
images not identified by the user as being relevant
are automatically excluded from being candidates
for retrieval in the following iterations. This benefit
of this approach is intuitive as there is no reason
for the user to see a non-relevant image more than
once. The image database contains 8400 images
obtained from a modification of the MPEG-7 Shape

Silhouette image set [14]. The results presented are
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averaged over 30 queries. For each query image,
there are 120 relevant images in the dataset, thus

we retrieve the top 120 images per iteration.

Figure 5 Screenshot of Experimental System

The measure used to present the retrieval accu-
racy in the experimental results is recall and is
defined as follows:

retrieved

relevant,

recall = relevant,,,

where relevantremieved TEpresents the number of
relevant images retrieved for the given iteration
and relevantxa represents the number of images in
the database that are relevant to the query.

Table 1 shows a comparison of the retrieval
recall performance using the confidence coefficients
corresponding to 60%, 70%, 80%, 90%, 95%, 99%
and 99.9%
boldface values identify the best retrieval for the

two-sided confidence intervals. The

given iteration.

From the results, one can see that as the number
of iterations increases, the higher confidence coeffi-
cients provide better recall. As 95% is the most
commonly used percentage for two-sided confidence
intervals, such confidence intervals will be used for
the remaining experimental results.

The precision-recall graph of Figure 6 shows the

effectiveness of our proposed feature re-weighting

Table 1 Retrieval Comparison of Confidence Interval Percentages

609 70% 80% 90% 95% 99% 99.9%
Iteration 5 0.5978 0.5992 0.5922 0.5975 0.5975 0.5969 0.5972
Iteration 10 0.6981 0.7050 0.6931 0.7147 0.7119 0.7117 0.7136
Iteration 20 0.8050 0.8139 0.8042 0.8222 0.8228 0.8239 0.8239
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Figure 6 Precision-Recall Graph

To show the effectiveness of our proposed
approach to that of MARS and the approach of
DD, we provide a quantitative performance compa-
We set the scoring scheme of MARS’
feedback
images are assigned a score of 1 and non-relevant

rison.
relevance technique so that relevant
images are assigned a score of 0. Figure 7
compares the final recall of each approach after
retrieving the 120 images for each iteration. Each
approach starts with the same recall as the feature
re-weighting is performed starting from the first
set of user feedback. Note, that since CSS cannot
be represented in the metric space, the intra-feature
weighting approach of MARS and DD cannot be
applied. The eccentricity, compactness, perimeter,
and circularity representations are each comprised
which  further
invalidates the use of intra-feature re-weighting. In

of just a single component,
addition, because the values for the components -of
the Polar Projection representation are not always

of comparable magnitudes, a lower variation for a

component’'s value between images does not
necessarily indicate higher importance of the
component. For these reasons, intra-feature

re-weighting approaches are not applied. In Figure
7, note how the proposed approach shows a

AEE Ad3e 54 7MEX 23 714 381

the first and
is desirable as the user

significant improvement between
second iteration. This
would like to obtain optimal results as quickly as
possible. The lower performance of MARS and DD
can be attributed to the fact that only their inter-

feature re-weighting is applicable.
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Figure 7 Comparison of Retrieval Effectiveness

Table 2 provides more detail of the recall perfor-
mance of the three approaches. The values in the
Confidence Intervals, DD, and MARS columns
correspond to the improvement in recall compared
to the first iteration of retrieval. The Improvementx
column, where X is MARS or DD, displays the
improvement of the proposed approach over MARS
and DD as calculated using:

improvementconﬁdencdmm,x —Iimprovement y

improvement y

5. Conclusion

In this paper, we proposed a feature re-weighting
technique for content-based image retrieval systems
that incorporate relevance feedback. Unlike existing
approaches, feature representations are not required
to have a fixed number of components for each
ima.ge. Instead, the feature distances are used with
the statistical technique of two-sided confidence
intervals to update the feature weights, As a result,

Table 2 Improvement in Recall

Confidence Intervals DD MARS ImprovementDD ImprovementMARS
Iteration 2 0.3708 0.1947 0.1869 0.9045 0.9839
Iteration 5 0.5108 0.3889 0.3403 0.3134 0.5010
Iteration 10 0.6253 0.4867 0.4317 0.2848 0.4485
Iteration 20 0.7361 0.5664 0.5175 0.2996 0.4224
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this allows for the approach to support features
irrespective of their structure. This is of great
handle
features that cannot be mapped to metric spaces.

benefit as existing approaches cannot

Another advantage of the proposed approach is
the simplicity of the user feedback. More specifi-
cally, in the approach of MARS, obtaining multi-
feedback is

dependent on the scoring scheme used. In addition,

class (relevant and non-relevant)

more responsibility is placed on the user in MARS
since they must judge the degree of relevance for
each result. In the proposed approach, the user
simply identifies the relevant images to provide
feedback.

Our experimental results show that our feature
re-weighting approach provides effective feature
re-weighting regardless of the structure of the
feature representations. One desirable characteristic
that is evident from the results is that the proposed
approach provides a significant improvement in the
early iterations of retrieval, which is evident with
the 98% improvement over MARS for the 2™

iteration of retrieval.
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