• Title/Summary/Keyword: CATIA

Search Result 296, Processing Time 0.027 seconds

Analysis of excitation forces for the prediction of the vehicle interior noise by the powertrain (Powertrain에 의한 차량실내소음 예측을 위한 엔진 가진력 해석에 관한 연구)

  • Lee, Joo-Hyung;Kim, Sung-Jong;Kim, Tae-Yong;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.82-88
    • /
    • 2006
  • The objective of this paper is to get excitation forces of the engine. A powertrain geometry model is produced by CATIA and its FE model is made by MSC/Patran. A vibration mode analysis which makes us know the natural frequency and mode shape and a running mode analysis which measures the mode shape as a relative displacement about one reference point by measuring the acceleration of each bracket to take a place at the running vehicle are experimentally implemented. After getting a satisfied MAC value by doing a correlation about a measured mode analysis value and analyzed value through MSC/Nastran software, all components are assembled through MSC/ADAMS software which is a dynamic analysis tool. We can predict the vibration of brackets which is the last points to occur the force of the engine combustion by analyzing the combustion force produced by engine mechanism.

  • PDF

An Analytical Study on the Effects of Structural Reinforcement for Laser Multi-tasking Machine (레이저 복합 가공기의 구조보강의 영향 평가에 관한 해석적 연구)

  • Shin, J.H.;Lee, C.M.;Chung, W.J.;Kim, J.S.;Lee, W.C.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.37-43
    • /
    • 2007
  • Recent technological developments in machine tools have been focused on high speed, low vibration machining and high precision machining. And the concern with multi-functional machining has been increased for the last several years. Multi-tasking machines are widely used in machine tool industries. Laser multi-tasking machine has been developed for high precision and fewer vibration machining. The purpose of this study is to evaluate the effects of structural reinforcement on Laser multi-tasking machine which is comprehensively combined turning center and laser machine. Up to date, for the structural stability evaluation of a multi-tasking machine, the analysis model has been considered only the weight of the upper parts. The positions of upper parts on multi-tasking machine have not been considered in the model. So, the results of the present FE model have revealed some difference with measurement data in case of multi-tasking machine. Design of the machine and structural analysis is carried out by FEM simulation using the commercial software CATIA V5. In the result of the structural analysis, effectiveness of reinforcement of the bed was confirmed.

A Study on Structural Design and Evaluation of the High Precision Cam Profile CNC Grinding Machine (고 정밀 캠 프로파일 CNC 연삭기의 구조설계 및 평가에 관한 연구)

  • Lim, Sang-Heon;Shin, Sang-Hun;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.113-120
    • /
    • 2006
  • A cam profile CNC grinding machine is developed for manufacture of high precision contoured cams. The developed machine is composed of the high precision spindle using boll bearings, the high stiffness box layer type bed and the three axis CNC controller with the high resolution AC servo motor. In this paper, structural and modal analysis for the developed machine is carried out to check the design criteria of the machine. The analysis is carried out by FEM simulation using the commercial software, CATIA V5. The machine is modeled by placing proper shell and solid finite elements. And also, this paper presents the measurement system and experimental investigation on the modal analysis of a grinding machine. The weak part of the machine is found by the experimental evaluation. The results provide structure modification data for good dynamic behaviors. And safety of the machine was confirmed by the modal analysis of modified machine design. Finally, the cam profile grinding machine was successfully developed.

A study on odor and ventilation in waste treatment facilities (폐기물 처리시설에서의 악취 및 환기에 관한 연구)

  • Seo, Byung-Suk;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, as the income level and quality of life have improved, the desire for a pleasant environment has increased, and a deodorization plan is required through thorough prevention and diffusion of odorous substances in waste treatment facilities recognized as hateful facilities, appropriate collection, and selection of the right prevention facilities. In this study, a waste disposal facility was modeled and computerized analysis for odor and ventilation analysis was conducted. Numerical analysis of the waste treatment facility was performed at the size of the actual plant. CATIA V5 R16 for numerical model generation and ANSYS FLUENT V.13 for general purpose flow analysis were used as analysis tools. The average air-age of the internal was 329 seconds, and the air-flow velocity was 0.384m/s. The odor diffusion analysis inside the underground pump room showed congestion-free air circulation through streamline distribution and air-age distribution. This satisfies the ASHRAE criteria. In addition, the results of diffusion analysis of odorous substances such as ammonia, hydrogen sulfide, methyl mercaptan and dimethyl sulfide were all expected to satisfy the regulatory standards. Particularly in the case of the waste loading area, the air-flow velocity was 0.297m/s, and the result of meeting the regulatory standards with 0.167ppm of ammonia, 0.00548ppm of hydrogen sulfide, 0.003ppm of methyl mercaptan, and 0.003ppm of dimethyl sulfide was found.

Design Verification of APR1400 Reactor Vessel Through Re-engineering Approach

  • Mutembei, Mutegi Peter;Namgung, Ihn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • This paper describes verification of APR1400 reactor vessel by applying the system engineering approach, in which the design re-engineering method is used to check the design parameters of APR1400 RV (reactor vessel). The RV is classified as safety class 1 and therefore must adhere strictly to the rules of ASME BPVC section III, subsection NB and seismic category I. This study explores designing the RV by following the ASME guidelines and making a comparative study with the current design. To meet this objective we apply system engineering methodologies to structure the process and allow for verification and validation of the major RV design parameters such as thickness of RV. The structural thicknesses of various part of RV are determined as well as reinforcements on the RV major nozzles. A 3D virtual reality model was created based on the design parameters using CATIA V5 and animation using Dassault Composer V2016. A comparison of re-engineered ARP1400 RV and standard APR1400 RV was done to show which design parameters were taken more conservative approach.

Development of a Roll-Forming Process of Linearly Variable Symmetric Hat-type Cross-section (좌우 대칭 모자형 단면이 길이 방향으로 선형적으로 변하는 롤 포밍 공정의 개발)

  • Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.118-125
    • /
    • 2015
  • The roll-forming process is a highly productive incremental forming process and is suitable for manufacturing thin, high-strength steel products. Recently, this process has been considered one of the most productive processes in manufacturing high-strength steel automotive structural parts. However, it is very difficult to develop the roll-forming process when the cross-sectional shape of the product changes in the longitudinal direction. In this study, a roll-forming process for manufacturing high-strength steel automotive parts with a linearly variable symmetric hat-type cross-section was developed. The forming rolls were designed by the 3D CAD system, CATIA. Additionally, the designed forming rolls were modified by the simulation through the 3D elastic-plastic finite element analysis software, MARC. The results of the finite element analysis show that the final roll-forming roll can successfully produce the desired high-strength steel automotive part with a variable cross-section.

Optimum Design of the Agricultural Support and Binder for Stretching Device (가중치법을 이용한 농작물 지지대 및 결속장치의 최적설계)

  • Lee, Man-Gi;Kim, Jin-Ho;Shin, Ki-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.28-33
    • /
    • 2015
  • In this study, the optimal design for the support and the binding device for the protection of crops for the maximum allowable stress of the shape necessary to minimize volume has been proposed. Optimization of the support and the binding device for the crops should be designed to support businesses in terms of profit, in part to reduce the material, and to profit from the ease and speed of working that part of the farmers. We used CATIA for the mechanical design and the ANSYS program for the structural analysis. Additionally, the optimization was performed by PIAnO with seven design variables for the binding device and three parameters for the support. The weight method using a multi-objective function was also determined by the Pareto optimal solution. The volume of the binding device in the optimum design result was found to be reduced by 16%, from $2.278e-005m^3to1.912e-005m^3$. From the result, we confirmed the effectiveness of the design method proposed as a multi-objective function optimization problem.

CAE Analysis on Strength and Fatigue of Rear Door of Passenger Car (승용차량 리어도어의 강도 및 피로에 대한 CAE해석)

  • Ko, Jong Hyoun;Kang, Dae Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.63-69
    • /
    • 2014
  • This paper studies the strength, fatigue sensitivity, safety factor and lifetimes by means of structural and fatigue analyses of different models of rear doors upon the opening of doors and windows leading to severe fatigue fractures of the window motor components of rear doors. The simulation models were a standard model and other models. The other models, which are denoted here as models I and II, were modified versions of the standard model, with a rib of 3mm and a thickness of 2mm as compared to the standard model. The door was modelled with CATIA V5 and analyzed with the ANSYS program. The material of the rear door was cold rolled steel (DDQ). From the study results, the standard model and model I were confirmed to be less safe upon the opening of the door as compared to the opening of a window in terms of fatigue, but model II was found to be safe for both door and window openings.

Population Inquiry Regarding Mammography in Postmenopausal Women in Southern Brazil

  • Romeiro-Lopes, Tiara Cristina;Dell'Agnolo, Catia Millene;Rocha-Brischiliari, Sheila Cristina;Gravena, Angela Andreia Franca;de Barros Carvalho, Maria Dalva;Pelloso, Sandra Marisa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6839-6844
    • /
    • 2013
  • This study was conducted to analyze the prevalence of non-performance of mammography, and associated factors, among postmenopausal women. This analytical, exploratory, cross-sectional study, of a domicile population inquiry type, was performed in the municipality of Maringa, Parana, Brazil. A total of 456 women were interviewed, aged 45 to 69 years, who presented with natural menopause and cessation of menstruation for at least twelve months. Statistical associations were found between the non-performance of mammography and schooling of less than seven years, paid employment, sedentary lifestyle, smoking, the non-use of hormone replacement therapy, not having consulted a doctor in the previous year, not having consulted a gynecologist, lacking a family history of breast cancer, not having performed the Papanicolaou test, not having performed clinical breast examination, and not having difficult access to health services. After logistic regression analysis, not performing mammography was associated with reports of a fair or bad health status. The study data revealed factors "responsible" for the non-performance of mammography, and the results should contributing to improvement/enhancement of healthy behaviour of Brazilian women in the post-menopausal phase.

Design for Hydraulic Hose Routing Pathes and Fitting Angles (유압 호스의 경로 생성 및 피팅 배열각 설계)

  • Kim Y.S.;Kim J.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • A hydraulic hose is an important part of the hydraulic system which transmits power using pressurized fluids. It allows relative motion between components at each end of the hose assembly, and it is much easier to route a hose assembly than it is to bend and install a rigid tubing assembly. Unnecessary loads, which drop the hose's pressure capability and shorten service life, depend on a hose-routing. Therefore, the Hydraulic system designers must be aware to consider unnecessary load does not affect the here. For this consideration in an early stage of the design process, CAD system must support the hose assembly routing design function which is to generate routing path and design fitting angle properly. This paper proposes 2 methods. One is to generate curves that are similar to routing paths of the real hose assembly using the energy minimization method and the optimization method. The other is to design fitting angles that are important design elements of a hose assembly using the Parallel Transport Frame. To implement the proposed methods above, commercial CAD software, CATIA has been integrated with our program.