Managers are required to adopt and implement the human resource management practice that fit firm's strategy the most, so that optimize overall performance. However, the time and relative resources that any firm has are limited, which demands managers to understand the relative importance of all sorts of HR practice and promote them in an order of their relative importance. This study follows the universal perspective and contingency perspective(according to firm size and strategy type), try to identify the most effective HR practice on performance as well as their relative importance by "CART Ensemble" analysis. The results are as follows. From universal perspective, firms always need to high level of integration between strategy and HR department, decision making participation, autonomy of speed of working, and autonomy of way of working. Contingency perspective also suggested the importance of integration between HRM and strategy. But others are different case by case. This study suggests useful implications for managers.
Journal of the Korean Institute of Intelligent Systems
/
v.6
no.4
/
pp.71-80
/
1996
This paper presents stabilization and position control of the Inverted-Pendulum system with cart by using Evolution Strategies that is one of the Evolutionary Computation and is effective in searching real number. The control input of the Inverted-Pendulum is the element of chromosome corresponding to the divided space of Inverted-Pendulum state variable x, x, 0, 0 . In general, the larger the length of the chromosome is, the longer the time of evolution to search optimal solution is. So in this paper, we propose a scheme that reduce the state space by half by taking the method, that is, converting only the sign of the control input without obtaining separately for the symmetrical sections of the Inverted-Pendulum to improve the speed of Evolution, and improved the efficiency of the entire system in addition to the improvement of the chromosome's evolution time by carrying out the chromosome's evolutional process by two steps one of which is that cart is positioned near the control point and the other cart is positioned far from that point. We propose another method that is Neural Network-Evolution StrategiedNN-ES) Controller. We verify the effectiveness of the proposed control scheme by computer simulations.
Argubi-Wollesen, Andreas;Wollesen, Bettina;Leitner, Martin;Mattes, Klaus
Safety and Health at Work
/
v.8
no.1
/
pp.11-18
/
2017
The purpose of this review is to name and describe the important factors of musculoskeletal strain originating from pushing and pulling tasks such as cart handling that are commonly found in industrial contexts. A literature database search was performed using the research platform Web of Science. For a study to be included in this review differences in measured or calculated strain had to be investigated with regard to: (1) cart weight/ load; (2) handle position and design; (3) exerted forces; (4) handling task (push and pull); or (5) task experience. Thirteen studies met the inclusion criteria and proved to be of adequate methodological quality by the standards of the Alberta Heritage Foundation for Medical Research. External load or cart weight proved to be the most influential factor of strain. The ideal handle positions ranged from hip to shoulder height and were dependent on the strain factor that was focused on as well as the handling task. Furthermore, task experience and subsequently handling technique were also key to reducing strain. Workplace settings that regularly involve pushing and pulling should be checked for potential improvements with regards to lower weight of the loaded handling device, handle design, and good practice guidelines to further reduce musculoskeletal disease prevalence.
Data analysis is the universal classification techniques, which requires a lot of effort. It can be easily analyzed to understand the results. Decision tree which is developed by Breiman can be the most representative methods. There are two core contents in decision tree. One of the core content is to divide dimensional space of the independent variables repeatedly, Another is pruning using the data for evaluation. In classification problem, the response variables are categorical variables. It should be repeatedly splitting the dimension of the variable space into a multidimensional rectangular non overlapping share. Where the continuous variables, binary, or a scale of sequences, etc. varies. In this paper, we obtain the coefficients of precision, reproducibility and accuracy of the classification tree to classify and evaluate the performance of the new cases, and through experiments to evaluate.
Kim, Byung-Doo;Kim, Hyun-Ji;Lee, Seong-Won;Lee, Jea-Young
Journal of the Korean Data and Information Science Society
/
v.25
no.6
/
pp.1385-1395
/
2014
Economic traits of livestock are affected by environmental factors and genetic factors. In addition, it is not affected by one gene, but is affected by interaction of genes. We used a linear regression model in order to adjust environmental factors. And, in order to identify gene-gene interaction effect, we applied data mining techniques such as neural network, logistic regression, CART and C5.0 using five-SNPs (single nucleotide polymorphism) of FASN (fatty acid synthase). We divided total data into training (60%) and testing (40%) data, and applied the model which was designed by training data to testing data. By the comparison of prediction accuracy, C5.0 was identified as the best model. It were selected superior genotype using the decision tree.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.05a
/
pp.266-273
/
2005
Data mining techniques enable us to generate useful information for decision support from the data sources which are generated and accumulated in the process of routine organizational management activities. College administration system is a typical example that produces a warehouse of student records as each and every student enters a college and undertakes the curricular and extracurricular activities. So far, these data have been utilized to a very limited student service purposes, such as issuance of transcripts, graduation evaluation, GPA calculation, etc. In this paper, we utilize Holland career search test results, TOEIC score, course work list, and GPA score as the input for data mining and generation the student advisory information. Factor analysis, AHP(Analytic Hierarchy Process), artificial neural net, and CART(Classification And Regression Tree) techniques are deployed in the data mining process. Since these data mining techniques are very powerful in processing and discovering useful knowledge and information from large scale student databases, we can expect a highly sophisticated student advisory knowledge and services which may not be obtained with the human student advice experts.
Kim, Tae-Ho;Rho, Jeong-Hyun;Kim, Young-Il;Oh, Young-Taek
International Journal of Highway Engineering
/
v.12
no.4
/
pp.93-100
/
2010
Trip generation is the first step in the conventional four-step model and has great effects on overall demand forecasting, so accuracy really matters at this stage. A linear regression model is widely used as a current trip generation model for such plans as urban transportation and SOC facilities, assuming that the relationship between each socio-economic index and trip generation stays linear. But when rapid urban development or an urban planning structure has changed, socio-economic index data for trip estimation may be lacking to bring many errors in estimated trip. Hence, instead of assuming that a socio-economic index widely used for a general purpose, this study aims to develop a new trip generation model by type based on the market separation for the variables to reflect the characteristics of various zones. The study considered the various characteristics (land use, socio-economic) of zones to enhance the forecasting accuracy of a trip generation model, the first-step in forecasting transportation demands. For a market separation methodology to improve forecasting accuracy, data mining (CART) on the basis of trip generation was used along with a regression analysis. Findings of the study indicated as follows : First, the analysis of zone characteristics using the CART analysis showed that trip production was under the influence of socio-economic factors (men-women relative proportion, age group (22 to 29)), while trip attraction was affected by land use factors (the relative proportion of business facilities) and the socio-economic factor (the relative proportion of third industry workers). Second, model development by type showed as a result that trip generation coefficients revealed 0.977 to 0.987 (trip/person) for "production" 0.692 to 3.256 (trip/person) for "attraction", which brought the necessity for type classifications. Third, a measured verification was conducted, where "production" and "attraction" showed a higher suitability than the existing model. The trip generation model by type developed in this study, therefore, turned out to be superior to the existing one.
Studies on the distribution of traffic demands have been proceeding by providing traffic information for reducing greenhouse gases and reinforcing the road's competitiveness in the transport section, however, since it is preferentially required the extensive studies on the driver's behavior changing routes and its influence factors, this study has been developed a discriminant model for changing routes considering driving conditions including traffic conditions of roads and driver's preferences for information media. It is divided into three groups depending on driving conditions in group classification with the CART analysis, which is statistically meaningful. And, elements of the driving conditions and the preferred media affecting the change of paths are classified into statistical meaningful groups through the CHAID analysis, and the major factors affecting the change of paths are examined. Finally, the extent that driving conditions and preferred media affect a route change is examined through a discriminant analysis, and it is developed a discriminant model equation to predict a route change. As a result of building the discriminant model equation, it is shown that driving conditions affect a route change much more, the entire discriminant hit ratio is derived as 64.2%, and this discriminant equation shows high discriminant ability more than a certain degree.
Customer retention is one of the major issues in life insurance industry, in which competition is increasingly fierce. There are many things for the life insurers to do many things to retain the customers. One of those things is to make sure to keep in touch with all customers. When an insurance-planner resigned, his/her customers must be taken care of by some planner-assistants. This article outlines the design of Contact Scheduling System (CSS) that supports planner-assistants for contacting the customers. Planner-assistants are unable to share the resigned insurance-planner's experience and knowledge regarding the customer relationship management. The CSS developed by employing both Classification And Regression Tree (CART) technique and Sequential Pattern Mining (SPM) technique has a two-stage process. In the first stage, it segments the customers into eight groups by CART model. Then it generates contact scheduling information consisting of contact-purpose, contact-interval and contact-channel, according to the segment's typical contact pattern. Contact-purpose is derived by schedule-driven, event-driven, or business-rule-driven. Schedule-driven contact is determined by SPM model. In the operation of CSS in a realistic situation, it shows a practicality in supporting planner-assistants to keep in touch with the customers efficiently and effectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.