• Title/Summary/Keyword: CANDU형 원전 격납건물

Search Result 5, Processing Time 0.02 seconds

Assessment of the Internal Pressure Fragility of the CANDU Type Containment Buildings using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 CANDU형 격납건물의 내압취약도 평가)

  • Hahm, Dae-Gi;Choi, In-Kil;Lee, Hong-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.445-452
    • /
    • 2010
  • In this paper an assessment of the internal pressure fragility of the CANDU type containment buildings is performed. The uncertainties of the performance of the containment buildings, material properties and tendon characteristics are referred from the in-service reports of Wolsung Unit 1. The containment buildings are modeled as a three-dimensional finite elements with considering the major opening and penetrations. A new method to evaluate the probabilistic fragility of the massive structural system is developed. The fragility curves of the target containment building are presented with repect to the failure modes and reliability levels. The center of wall is reveled as the most weak structural component of the containment building in the sense of the rupture and catastrophic rupture failure modes.

Development of Analysis Tool for Structural Behavior of Domestic Containment Building with Grouted Tendon (CANDU-type) (국내 부착식 텐던 격납건물(CANDU형)의 구조거동 분석 도구 개발)

  • Lee, Sang-Keun;Song, Young-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.901-908
    • /
    • 2006
  • The structural integrity of containment building in Nuclear Power Plants has to be verified by the ISI(In Service Inspection) because there are some variations on the structural behavior of it due to the change of the physical properties of concrete and tendon with the lapse of time. In this study, the program 'SAPONC-CANDU' which can monitor and analyze the structural behavior of the containment building with grouted tendon (CANDU-type, 'Wolsong unit-2, 3, and 4' in Korea) was developed. This program is based on the algorithm which can calculate the prediction values of the quantities of strain variation for the vibrating-wire strain gauges embedded into the concrete of the containment building under temperature and time dependent factors which are creep, shrinkage, and prestressing force. The readings of the strain gauges are used as input data for the operation of the program. And it finally provides graphically a prediction value, line and band of the quantity of strain variation for the respective strain gauges, therefore, it is thought that the site engineers are able to assess the structural integrity of the domestic containment building with grouted tendon with easy using this program.

Axisymmetric Modeling of Dome Tendons in Nuclear Containment Building II. Verification through Numerical Examples (원전 격납건물 돔 텐던의 축대칭 모델링 기법 II. 수치예제를 통한 검증)

  • Jeon Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.527-533
    • /
    • 2005
  • Axisymmetric modeling of the nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings, where the axisymmetric approximation is required for the actual non-axisymmetric tendon arrangements in the dome. In the preceding companion paper, some procedures are proposed for the domestic CANDU and KSNP type containments that can implement the actual 3-dimensional tendon stiffness and prestressing effect into the axisymmetric model. In this paper, the proposed schemes are verified through some numerical examples comparing the results of the actual 3-dimensional model with those of some axisymmetric models. The results of the proposed axisymmetric analyses show relatively good agreements with the actual structural behavior especially for the CANDU type. Also, it is shown that proper level of the prestressing in a hoop direction plays an important role to predict the actual prestressing effect in the axisymmetric dome modeling. Finally, correction factors are discussed that can revise some approximations introduced in the derivations.

Axisymmetric Modeling of Dome Tendons in Nuclear Containment Building I. Theoretical Derivations (원전 격납건물 돔 텐던의 축대칭 모델링 기법 I. 이론식의 유도)

  • Jeon Se-Jin;Chung Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.521-526
    • /
    • 2005
  • Prestressing tendons in a nuclear containment building dome are non-axisymmetrically arranged in most cases. However, simple axisymmetric modeling of the containment has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as an internal pressure. In this case, the axisymmetric approximation is required for the actual tendon arrangements in the dome. Some procedures are proposed that can implement the actual 3-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in 3 or 2-ways depending on a containment type, are converted into an equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, equivalent load method and initial stress method are devised and the corresponding loads or stresses are derived in terms of the axisymmetric model. In a companion paper, the proposed schemes are applied into CANDU and KSNP(Korean Standard Nuclear Power Plant) type containments and are verified through some numerical examples comparing the analysis results with those of the actual 3-dimensional model.

Development of Analysis Technique for Structural Behavior of Containment with Bonded-Type Tendons (CANDU Type) (원전 부착식 텐던 격납건물의 구조거동 분석기법 개발 I-CANDU형)

  • Lee, Sang-Keun;Park, Sang-Soon;Lee, Sang-Min;Cho, Myong-Seok;Song, Young-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.643-646
    • /
    • 2004
  • The posttensioning system of nuclear containment have to be verified its structural integrity by the periodic inspection because the structural behavior of the containment is changed by the variation of the physical property of concrete and tendon as time passes. In this study a program 'SAPONC-CANDU' which is able to monitor and analysis the micro structural behavior of the domestic CANDU type containment at all times was developed. The readings of vibrating-wire strain gauges embedded into the concrete of containment were used as input data for operating the program. This program provides the long-term prediction values and bands of the concrete strain due to the time dependent factors of the concrete and tendon of the domestic CANDU type containment.

  • PDF