• 제목/요약/키워드: CAD-based system

검색결과 798건 처리시간 0.027초

Rapid Prototyping of Polymer Microfluidic Devices Using CAD/CAM Tools for Laser Micromachining

  • Iovenitti, Pio G.;Mutapcic, Emir;Hume, Richard;Hayes, Jason P.
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.183-192
    • /
    • 2006
  • A CAD/CAM system has been developed for rapid prototyping (RP) of microfluidic devices based on excimer laser micromachining. The system comprises of two complementary softwares. One, the CAM tool, creates part programs from CAD models. The other, the Simulator Tool, uses a part program to generate the laser tool path and the 2D and 3D graphical representation of the machined microstructure. The CAM tool's algorithms use the 3D geometry of a microstructure, defined as an STL file exported from a CAD system, and process parameters (laser fluence, pulse repetition frequency, number of shots per area, wall angle), to automatically generate Numerical Control (NC) part programs for the machine controller. The performance of the system has been verified and demonstrated by machining a particle transportation device. The CAM tool simplifies part programming and replaces the tedious trial-and-error approach to creating programs. The simulator tool accepts manual or computer generated part programs, and displays the tool path and the machined structure. This enables error checking and editing of the program before machining, and development of programs for complex microstructures. Combined, the tools provide a user-friendly CAD/CAM system environment for rapid prototyping of microfluidic devices.

조선해양 설계분야에서 협업시스템을 위한 프레임워크의 설계 및 구현 (Design and Implementation of a Framework for Collaboration Systems in the Shipbuilding and Marine Industry)

  • 윤문경;김현주;박민길;한명기;김완규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.270-273
    • /
    • 2015
  • 조선 해양산업에서 엔지니어링 설계시스템은 사용 데이터의 대량화와 실시간성으로 인하여 이전의 2D CAD(2차원 CAD)의 한계와 문제점에서 벗어나 최근에는 3D CAD(3차원 CAD) 환경으로 발전해오고 있다. 그러나 3D CAD 환경에서는 다양한 엔지니어링 모델 정보와 그래픽 데이터가 늘어남에 따라 서버의 자원 지원에 대한 부하가 크게 발생될 뿐만 아니라, 3D CAD로 제작한 설계 모델을 자유롭게 핸들링 할 수 없는 문제점이 있다. 또한 사용자 측면에서는 서버 당 접속 세션이 늘어남에 따라 전반적인 성능저하가 초래된다. 따라서 네트워크 퍼포먼스에 대한 효율적인 협업 환경을 지원하는 엔지니어링 설계시스템의 필요성이 제기되고 있다. 본 논문에서는 높은 그래픽 처리 능력과 공유 기술이 뛰어난 가상화 솔루션 시트릭스 젠앱 6.5(Citrix XenApp)와 강화된 GPU(Graphic Processing Unit) 하드웨어 가속 기술을 적용한 NVIDIA GRID(엔비디아 그리드) K2 솔루션을 적용함으로써 효율적인 엔지니어링 협업 설계시스템을 위한 프레임워크를 설계하고 구현하였다.

  • PDF

Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19

  • Eui Jin Hwang;Hyungjin Kim;Soon Ho Yoon;Jin Mo Goo;Chang Min Park
    • Korean Journal of Radiology
    • /
    • 제21권10호
    • /
    • pp.1150-1160
    • /
    • 2020
  • Objective: To describe the experience of implementing a deep learning-based computer-aided detection (CAD) system for the interpretation of chest X-ray radiographs (CXR) of suspected coronavirus disease (COVID-19) patients and investigate the diagnostic performance of CXR interpretation with CAD assistance. Materials and Methods: In this single-center retrospective study, initial CXR of patients with suspected or confirmed COVID-19 were investigated. A commercialized deep learning-based CAD system that can identify various abnormalities on CXR was implemented for the interpretation of CXR in daily practice. The diagnostic performance of radiologists with CAD assistance were evaluated based on two different reference standards: 1) real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) results for COVID-19 and 2) pulmonary abnormality suggesting pneumonia on chest CT. The turnaround times (TATs) of radiology reports for CXR and rRT-PCR results were also evaluated. Results: Among 332 patients (male:female, 173:159; mean age, 57 years) with available rRT-PCR results, 16 patients (4.8%) were diagnosed with COVID-19. Using CXR, radiologists with CAD assistance identified rRT-PCR positive COVID-19 patients with sensitivity and specificity of 68.8% and 66.7%, respectively. Among 119 patients (male:female, 75:44; mean age, 69 years) with available chest CTs, radiologists assisted by CAD reported pneumonia on CXR with a sensitivity of 81.5% and a specificity of 72.3%. The TATs of CXR reports were significantly shorter than those of rRT-PCR results (median 51 vs. 507 minutes; p < 0.001). Conclusion: Radiologists with CAD assistance could identify patients with rRT-PCR-positive COVID-19 or pneumonia on CXR with a reasonably acceptable performance. In patients suspected with COVID-19, CXR had much faster TATs than rRT-PCRs.

Simulation Based Production Using 3-D CAD in Shipbuilding

  • Okumoto, Yasuhisa;Hiyoku, Kentaro;Uesugi, Noritaka
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.3-8
    • /
    • 2006
  • The application of three-dimensional (3-D) CAD has been popularized for design and production and digital manufacturing has been spreading in many industrial fields. By simulation of the production process using 3-D digital models, which are the core of CIM (Computer Integrated Manufacturing) system, the efficiency and safety of production are improved at each stage of work, and optimization of manufacturing can be achieved. This paper firstly describes the concept of "simulation based production" in shipbuilding and also digital manufacturing; the 3-D CAD system is indispensable for effective simulation because ship structure is three dimensionally complex. By simulation, "computer optimized manufacturing" can be possible. The most effective fields of simulation in shipbuilding are in jobs where many parties have to cooperate, while existing two-dimensional drawings are hardly observed the whole structures due to interference between structures or equipment of complex shape. In this paper some examples of the successful application in IHIMU (IHI Marine United Inc.) are shown: assembly of a pipe unit, erection of a complex hull block, carriage of equipment, installation of a propeller, and access in an engine room.

Automatic detection of the optimal ejecting direction based on a discrete Gauss map

  • Inui, Masatomo;Kamei, Hidekazu;Umezu, Nobuyuki
    • Journal of Computational Design and Engineering
    • /
    • 제1권1호
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, the authors propose a system for assisting mold designers of plastic parts. With a CAD model of a part, the system automatically determines the optimal ejecting direction of the part with minimum undercuts. Since plastic parts are generally very thin, many rib features are placed on the inner side of the part to give sufficient structural strength. Our system extracts the rib features from the CAD model of the part, and determines the possible ejecting directions based on the geometric properties of the features. The system then selects the optimal direction with minimum undercuts. Possible ejecting directions are represented as discrete points on a Gauss map. Our new point distribution method for the Gauss map is based on the concept of the architectural geodesic dome. A hierarchical structure is also introduced in the point distribution, with a higher level "rough" Gauss map with rather sparse point distribution and another lower level "fine" Gauss map with much denser point distribution. A system is implemented and computational experiments are performed. Our system requires less than 10 seconds to determine the optimal ejecting direction of a CAD model with more than 1 million polygons.

선삭공정에서 CAD 인터페이스된 자동공정계획시스템개발에 관한 연구( I ) : 형상특징의 자동인식과 공정선정 (A Study on CAD interfaced CAPP System for Turning Operation ( I ) : Automatic Feature Recognition and Process Selection)

  • 조규갑;김인호
    • 대한산업공학회지
    • /
    • 제17권2호
    • /
    • pp.1-16
    • /
    • 1991
  • This paper deals with some critical activities of CAPP system such as generation of part description database, part feature recognition, process and operation selection, and sequencing method for turning operation of symmetric rotational parts. The part description database is generated by data conversion module from CAD data, and the part feature is recognized by using both pattern primitives and feature recognition rules. Machining processes and operations are selected based on machining surface features and its sequence is determined by rules acquired from process planning expert. AutoCAD is employed as CAD system and computer program is developed by using Turbo-C on IBM PC/AT compatible system.

  • PDF

CNC 만능 원통연삭기의 CAD/CAM 시스템 개발 (Development of the CAD/CAM System for CNC Universal Cylindrical Grinding Machines)

  • 조재완;김석일
    • 한국CDE학회논문집
    • /
    • 제5권4호
    • /
    • pp.312-318
    • /
    • 2000
  • In this study, an exclusive CAD/CAM system is developed for enhancing the effectiveness and productivity of CNC universal cylindrical grinding machines on which the external/facing/internal grinding cycles and the wheel dressing cycles are integratively carried out. The CAD/CAM system can manage the various processes such as geometry design, NC code generation, NC code verification, DNC operation, and so on. Especially, the feature-based modeling concept is introduced to improve the geometry design efficiency. And the NC code verification is realized by virtual manufacturing technique based on the real-time analysis of NC codes and the boolean operation between workpiece and wheel.

  • PDF

3D Model Compression For Collaborative Design

  • Liu, Jun;Wang, Qifu;Huang, Zhengdong;Chen, Liping;Liu, Yunhua
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.1-10
    • /
    • 2007
  • The compression of CAD models is a key technology for realizing Internet-based collaborative product development because big model sizes often prohibit us to achieve a rapid product information transmission. Although there exist some algorithms for compressing discrete CAD models, original precise CAD models are focused on in this paper. Here, the characteristics of hierarchical structures in CAD models and the distribution of their redundant data are exploited for developing a novel data encoding method. In the method, different encoding rules are applied to different types of data. Geometric data is a major concern for reducing model sizes. For geometric data, the control points of B-spline curves and surfaces are compressed with the second-order predictions in a local coordinate system. Based on analysis to the distortion induced by quantization, an efficient method for computation of the distortion is provided. The results indicate that the data size of CAD models can be decreased efficiently after compressed with the proposed method.

OpenCASCADE를 이용한 CAD 모델의 오류 진단 시스템의 개발 (Development of a Diagnosis System far CAD Model Errors using OpenCASCADE)

  • 양정삼;한순홍;최영;박상호
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.151-158
    • /
    • 2002
  • Automotive engineers involved in a new car project use various CAD systems that are chosen based on work requirements. For example, engineers in Hyundai Motors are using Pro/Designer and Alias fur the style design, but they use CATIA to design parts and assemblies, ANSYS for FEM analysis, and Pro/Engineer to design engines. Because they use different CAD systems, they have difficulties in collaborative design. Data, which contains errors, is transferred between CAD systems. It is difficult to find out such errors in a large CAD model. An evaluation method for CAD models has been developed in this study. This diagnosis tool analyses a STEP or an IGES file generated from a CAD system, and produces a quantitative error report. The tool has been tested with actual data sets. This paper proposes an algorithm that produces mathematical error values of entities of IGES models that have geometrical data, and entities of STEP models that have topological data, and inspects every part off model. To develop this system, we have used the OpenCASCADE kernel, which is an open source kernel developed by Matra Datavision of France.

RGB-D 센서 및 3D Virtual Clothing CAD활용에 의한 패션소재의 동적표현 시스템에 대한 연구 (A Study on the Dynamic Expression of Fabrics based on RGB-D Sensor and 3D Virtual Clothing CAD System)

  • 이지은;김슬기;김종준
    • 패션비즈니스
    • /
    • 제17권1호
    • /
    • pp.30-41
    • /
    • 2013
  • Augmented reality techniques have been increasingly employed in the textile and fashion industry as well as computer graphics sectors. Three-dimensional virtual clothing CAD systems have also been widely used in the textile industries and academic institutes. Motion tracking techniques are grafted together in the 3D and augmented reality techniques in order to develop the virtual three-dimensional clothing and fitting systems in the fashion and textile industry sectors. In this study, three-dimensional virtual clothing sample has been prepared using a 3D virtual clothing CAD along with a 3D scanning and reconstruction system. Motion of the user has been captured through an RGB-D sensor system, and the virtual clothing fitted on the user's body is allowed to move along with the captured motion flow of the user. Acutal fabric specimens are selected for the material characterization. This study is a primary step toward building a comprehensive system for the user to experience interactively virtual clothing under real environment.