• Title/Summary/Keyword: CAD model applications

Search Result 82, Processing Time 0.025 seconds

Distributed CAD/CAE Environment Using STEP (STEP을 이용한 분산 CAD/CAE 환경)

  • 권기억;박명진;조성옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.395-399
    • /
    • 1997
  • An international standard for the product model data, STEP, and a standard for the distributed object technology. CORBA, will play a very important role in the future manufacturing environment. These two technologies provide background for the sharing of product data and the integration of applications on the network. This paper describes a prototype CAD/CAE enviroment that is integrated on the network by STEP and CORBA. Several application servers and client software were developed to verify the proposed concept.

  • PDF

Direct Finite Element Model Generation using 3 Dimensional Scan Data (3D SCAN DATA 를 이용한 직접유한요소모델 생성)

  • Lee Su-Young;Kim Sung-Jin;Jeong Jae-Young;Park Jong-Sik;Lee Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.143-148
    • /
    • 2006
  • It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.

RP Preprocessor Based on Distributed Objects (분산객체를 응용한 RP Preprocessor의 기능 구현)

  • 지해성;이승원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.120-128
    • /
    • 2003
  • When considering the use of rapid prototyping (RP), there are many issues a designer has to address for handling an STL model, the de facto standard fur RP. Today designers can skip all these issues by visiting web-based service bureaus that readily supply needed information for the RP services. Since orders are taken for RP parts through the web page of service providers designers are now asked to upload their STL files to the company server either by direct upload, ftp file transfer, or as an e-mail attachment. If the service bureau, however, fixes or edits an STL filceto optimize the RP process but neglects to tell its customer about the rework in detail, it may cause problems down the line in processing of the original CAD data for other applications. In this paper, we propose a framework for a collaborative virtual environment between CAD designers and RP processes on the internet which directly provides designers with an advanced preprocessor functionality, design visualization, as well as model display, repair, and slicing over the network. This can help smooth data transfer from CAD to RP process with minimum inconsistency in CAD.

Enhancement of CAD Model Interoperability Based on Feature Ontology

  • Lee Yoonsook;Cheon Sang-Uk;Han Sanghung
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.3
    • /
    • pp.33-42
    • /
    • 2005
  • As the networks connect the world, enterprises tend to move manufacturing activities into virtual spaces. Since different software applications use different data terminology, it becomes a problem to interoperate, interchange, and manage electronic data among heterogeneous systems. It is said that approximately one billion dollar has been being spent yearly in USA for product data exchange and interoperability. As commercial CAD systems have brought in the concept of design feature for the sake of interoperability, terminologies of design features need to be harmonized. In order to define design feature terminology for integration, knowledge about feature definitions of different CAD systems should be considered. STEP standard have attempted to solve this problem, but it defines only syntactic data representation so that semantic data integration is not possible. This paper proposes a methodology for integrating modeling features of CAD systems. We utilize the ontology concept to build a data model of design features which can be a semantic standard of feature definitions of CAD systems. Using feature ontology, we implement an integrated virtual database and a simple system which searches and edits design features in a semantic way.

A Case Study on Precise NURBS Modeling of Human Organs (인체장기의 정밀한 NURBS 곡면 모델링 사례연구)

  • Kim H.C.;Bae Y.H.;Soe T.W.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.915-918
    • /
    • 2005
  • Advances in Information Technology and in Biomedicine have created new uses for CAD technology with many novel and important biomedical applications. Such applications can be found, for example, in the design and modeling of orthopedics, medical implants, and tissue modeling in which CAD can be used to describe the morphology, heterogeneity, and organizational structure of tissue and anatomy. CAD has also played an important role in computer-aided tissue engineering for biomimetic design, analysis, simulation and freeform fabrication of tissue scaffolds and substitutes. And all the applications require precision geometry of the organs or bones of each patient. But the geometry information currently used is polygon model with none solid geometry and is so rough that it cannot be utilized for accurate analysis, simulation and fabrication. Therefore a case study is performed to deduce a transformation method to build free form surface from a rough polygon data or medical images currently used in the application. This paper describes the transformation procedure in detail and the considerations for accurate organ modeling are discussed.

  • PDF

Protein Analysis Using a Combination of an Online Monolithic Trypsin Immobilized Enzyme Reactor and Collisionally-Activated Dissociation/Electron Transfer Dissociation Dual Tandem Mass Spectrometry

  • Hwang, Hyo-Jin;Cho, Kun;Kim, Jin-Young;Kim, Young-Hwan;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3233-3240
    • /
    • 2012
  • We demonstrated the combined applications of online protein digestion using trypsin immobilized enzyme reactor (IMER) and dual tandem mass spectrometry with collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) for tryptic peptides eluted through the trypsin-IMER. For the trypsin-IMER, the organic and inorganic hybrid monolithic material was used. By employing the trypsin-IMER, the long digestion time could be saved with little or no sacrifice of the digestion efficiency, which was demonstrated for standard protein samples. For three model proteins (cytochrome c, carbonic anhydrase, and bovine serum albumin), the tryptic peptides digested by the IMER were analyzed using LC-MS/MS with the dual application of CAD and ETD. As previously shown by others, the dual application of CAD and ETD increased the sequence coverage in comparison with CAD application only. In particular, ETD was very useful for the analysis of highly-protontated peptide cations, e.g., ${\geq}3+$. The combination approach provided the advantages of both trypsin-IMER and CAD/ETD dual tandem mass spectrometry applications, which are rapid digestion (i.e., 10 min), good digestion efficiency, online coupling of trypsin-IMER and liquid chromatography, and high sequence coverage.

Diagnostic System of Modeling Errors Generated from IGES CAD Data Exchange (IGES CAD 데이터의 교환에서 오류 진단 시스템)

  • Park, Sang-Ho;Park, Jong-Wook;Han, Soon-Heung;Choi, Young;Yang, Jung-Sam;Lee, Byung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.218-225
    • /
    • 2003
  • A diagnostic system has been developed which reports modeling errors generated when exchanging CAD data using IGES (Initial Graphics Exchange Specification) format. The system determines whether the CAD data contains errors. It also helps to define the criteria for determining the integrity and interoperability of CAD data with downstream applications of another CAD/CAM/CAE/PDM systems. The methodology of our algorithms is to analyze IGES model data by identifying errors and anomalies with respect to the diagnosis of geometry and topology. The GUI (Graphic User Interface) of the developed system helps users to input values and to visualize diagnostic results at real time.

Building Feature Ontology for CAD System Interoperability (CAD 시스템 간의 상호 운용성을 위한 설계 특징형상의 온톨로지 구축)

  • 이윤숙;천상욱;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.167-174
    • /
    • 2004
  • As the networks connect the world, enterprises tend to move manufacturing activities into virtual spaces. Since different applications use different data terminology, it becomes a problem to interoperate, interchange, and manage electronic data among different systems. According to RTI, approximately one billion dollar has been being spent yearly for product data exchange and interoperability. As commercial CAD systems have brought in the concept of design feature for the sake of interoperability, terminologies of design feature need to be harmonized. In order to define design feature terminology for integration, knowledge about feature definitions of different CAD systems should be considered. STEP (Standard for the Exchange of Product model data) have attempted to solve this problem, but it defines only syntactic data representation so that semantic data integration is unattainable. In this paper, we utilize the ontology concept to build a data model of design feature which can be a semantic standard of feature definitions of CAD systems. Using feature ontology, we implement an integrated virtual database and a simple system which searches and edits design features in a semantic way. This paper proposes a methodology for integrating modeling features of CAD systems.

Translation of 3D CAD Data to X3D Dataset Maintaining the Product Structure (3차원 CAD 데이터의 제품구조를 포함하는 X3D 기반 데이터로의 변환 기법)

  • Cho, Gui-Mok;Hwang, Jin-Sang;Kim, Young-Kuk
    • The KIPS Transactions:PartA
    • /
    • v.18A no.3
    • /
    • pp.81-92
    • /
    • 2011
  • There has been a number of attempts to apply 3D CAD data created in the design stage of product life cycle to various applications of the other stages in related industries. But, 3D CAD data requires a large amount of computing resources for data processing, and it is not suitable for post applications such as distributed collaboration, marketing tool, or Interactive Electronic Technical Manual because of the design information security problem and the license cost. Therefore, various lightweight visualization formats and application systems have been suggested to overcome these problems. However, most of these lightweight formats are dependent on the companies or organizations which suggested them and cannot be shared with each other. In addition, product structure information is not represented along with the product geometric information. In this paper, we define a dataset called prod-X3D(Enhanced X3D Dataset for Web-based Visualization of 3D CAD Product Model) based on the international standard graphic format, X3D, which can represent the structure information as well as the geometry information of a product, and propose a translation method from 3D CAD data to an prod-X3D.

Approximation of a compound surface to polyhedral model (복합곡면의 다면체 곡면 근사)

  • 김영일;전차수;조규갑
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.100-103
    • /
    • 1996
  • Presented in this study is an algorithmic procedure to obtain polyhedral model from a compound surface. The compound surface in this study denotes a collection of trimmed surfaces without topological relations. The procedure consists of two main modules: CAD data interface, and surface conversion to polyhedral model. The interface module gets geometric information from CAD databases, and makes topological information by scanning the geometric information. We are investigating CATIA system as a data source system. In the surface conversion module, a shell(compound surface with topological information) is approximated to a triangular-faceted polyhedral surface model through node sampling and triangulation steps. The obtained polyhedral model should obey the vertex-to-vertex rule and meet tolerance requirements. Since the polyhedral model has a simple data structure and geometry processing for it is very efficient and robust, the polyhedral model can be used in various applications, such as surface rendering in computer graphics, FEM model for engineering analysis, CAPP for surface machining, data generation for SLA, and NC tool path generation.

  • PDF