• Title/Summary/Keyword: CAD기반 시스템

Search Result 248, Processing Time 0.023 seconds

Study on Substitution Effect caused by Application of BIM Simulation System to Mock-up Site (시공단계 현장 Mock-up의 BIM 기반 시뮬레이션 기법 적용에 의한 기대효과 분석 연구)

  • Jang, Se-Jun;Yun, Seok-Heon;Paek, Joon-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.147-151
    • /
    • 2008
  • Construction project is completed through several stages and problems of each stage affect directly not only now but also next. Defect of 2D drawings influence in construction phase, and it make many loss on project. Nowadays we practically use real Mock-up test in construction sites to solve the problems. But it also has many problems which are waste much money and time. Therefore, this study tries to analyze effect that is occurred by appling BIM Mock-up simulation instead of real Mock-up execution. These analysis is conducted by comparing two construction building site. These have same shape but one is made for BIM Mock-up, and another is real Mock-up. Comparison points of view are cost, time and operator's satisfaction. It is expect that BIM Mock-up is more effective at low cost and on shorter time. But our analysis show that each are conducted different part of function. So new Mock-up type is required. Hybrid Mock-up is combine real mock-up with BIM simulation and it can minimize risk of project.

  • PDF

Initial System for Automation of PDQ-based Shape Quality Verification of Naval Ship Product Model (제품데이터품질(PDQ) 평가에 따른 함정 제품모델의 형상 품질검증 자동화 초기 시스템)

  • Oh, Dae-Kyun;Hwang, In-Hyuck;Ryu, Cheol-Ho;Lee, Dong-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • Recently, R.O.K. Navy is increasing re-usability of design data and application of M&S(Modeling and Simulation) through the establishment of collaborative product development environment focused on Naval Ship Product Model(NSPM). As a result, the reliability of the result of design is getting better, and furthermore, a study to improve quality of construction through simulation of production/operation is in progress. Accordingly, the database construction of design data and the DB(Database) quality become important, but there was not research related to those or it was just initial state. This paper conducted research about system of the quality verification process of shape elements which compose NSPM based on the quality verification guideline of NSPM as the result of the precedent study. The hull surface was limited as verification object. The study to verify two things that application of basic drawing by the cad model of hull surface, and whether there is error in the geometric quality of cad model was progressed. To achieve this goal, the verification criteria and algorithm were defined and the prototype system which is based on was developed.

Structural Stability Analysis of Medical Waste Sterilization Shredder (의료폐기물 멸균분쇄용 파쇄기의 구조적 안정성 분석)

  • Azad, Muhammad Muzammil;Kim, Dohoon;Khalid, Salman;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.409-415
    • /
    • 2021
  • Medical waste management is becoming increasingly important, specifically in light of the current COVID-19 pandemic, as hospitals, clinics, quarantine centers, and medical research institutes are generating tons of medical waste every day. Previously, a traditional incineration process was utilized for managing medical waste, but the lack of landfill sites, and accompanying environmental concerns endanger public health. Consequently, an innovative sterilization shredding system was developed to resolve this problem. In this research, we focused on the design and numerical analysis of a shredding system for hazardous and infectious medical waste, to establish its operational performance. The shredding machine's components were modeled in a CAD application, and finite element analysis (FEA) was conducted using ABAQUS software. Static, fatigue, and dynamic loading conditions were used to analyze the structural stability of the cutting blade. The blade geometry proved to be effective based on the cutting force applied to shred medical waste. The dynamic stability of the structure was verified using modal analysis. Furthermore, an S-N curve was generated using a high cycle fatigue study, to predict the expected life of the cutting blade. Resultantly, an appropriate shredder system was devised to link with a sterilization unit, which could be beneficial in reducing the volume of medical waste and disposal time, thereof, thus eliminating environmental issues, and potential health hazards.

A Study on the Development of a BIM Design Tool for Hanok Windows and Doors (BIM을 활용한 한옥 창호 설계 도구 개발에 관한 연구)

  • Choi, Joong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7331-7339
    • /
    • 2014
  • As the Korean government initiates the Han-style campaign, the efforts and expectations for the modernization and industrialization of Hanok are growing. Accordingly, a major R&D project sponsored by the government is in progress for the development of related technologies, in which the development of a Hanok design support system based on Building Information Modeling(BIM) technology is included as one of the major subjects. However, the development of design tools for Hanok so far has not focused on the windows and doors, which is another major element of Korean traditional architecture. Therefore, this study developed a BIM-based design tool for Hanok windows and doors as an approach to the integrated design of various Hanok elements and their applications to modern buildings. To this end, the characteristics of Hanok windows and doors were analyzed first in terms of the location, opening method, style, components, and the over-all construction. A design tool was then developed with the parametric modeling functions of the $ArchiCAD^{(R)}$system. The applicability and efficiency of the developed tool were verified with design simulations. This is expected to contribute to not only the application of Hanok windows and doors to modern buildings but also to the further development of an integrated Hanok design system.

Intelligent Architectural Design Module for Process Automation of Hanok Constructions (한옥 건축공정 자동화를 위한 지능형 설계모듈의 구현)

  • Ahn, Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1156-1164
    • /
    • 2012
  • Hanok is a cultural heritage containing our ancestor's life style intact and breathing alive with us until now. As Hanok has been concerned as a echo-friendly architecture, a new methodology for efficient construction without damaging the traditional construction process comes into request. The goal of this research is development of a architectural design tool based on the BIM(Building Information Modeling) for satisfying these demands. It will be usable to support whole process of the traditional building from digital design to production and construction. Firstly, we take a consideration of the traditional architecture reflecting the spirit of the age and suggest efficient design method for architectural components. Each components is pre-fabricated as a template representing similar components. All pre-fabricated components are designed by object-oriented concepts so, many variations for a component can be derived from the pre-fabricated component. Our method is helpful for reducing design errors because that it considers combining rule between connecting components in the template design. Moreover it is plugged in the commercial architectural CAD, so it can supports digital design not only traditional architecture but also fusion style mixed with modern architecture.

A Study on Matching Method of Hull Blocks Based on Point Clouds for Error Prediction (선박 블록 정합을 위한 포인트 클라우드 기반의 오차예측 방법에 대한 연구)

  • Li, Runqi;Lee, Kyung-Ho;Lee, Jung-Min;Nam, Byeong-Wook;Kim, Dae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • With the development of fast construction mode in shipbuilding market, the demand on accuracy management of hull is becoming higher and higher in shipbuilding industry. In order to enhance production efficiency and reduce manufacturing cycle time in shipbuilding industry, it is important for shipyards to have the accuracy of ship components evaluated efficiently during the whole manufacturing cycle time. In accurate shipbuilding process, block accuracy is the key part, which has significant meaning in shortening the period of shipbuilding process, decreasing cost and improving the quality of ship. The key of block accuracy control is to create a integrate block accuracy controlling system, which makes great sense in implementing comprehensive accuracy controlling, increasing block accuracy, standardization of proceeding of accuracy controlling, realizing "zero-defect transferring" and advancing non-allowance shipbuilding. Generally, managers of accuracy control measure the vital points at section surface of block by using the heavy total station, which is inconvenient and time-consuming for measurement of vital points. In this paper, a new measurement method based on point clouds technique has been proposed. This method is to measure the 3D coordinates values of vital points at section surface of block by using 3D scanner, and then compare the measured point with design point based on ICP algorithm which has an allowable error check process that makes sure that whether or not the error between design point and measured point is within the margin of error.

Specification and Synthesis of Speed-independent Circuit using VHDL (VHDL을 이용한 속도 독립 회로의 기술과 합성)

  • Jeong, Seong-Tae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1919-1928
    • /
    • 1999
  • There are no standard language for the specification of speed-independent circuits because existing specification methods are designed appropriately to each synthesis methodology. This paper suggests a method of using VHDL, a standard hardware description language, for the specification and synthesis of speed-independent circuits. Because VHDL is a multi-purpose language, we define a subset of VHDL which can be used for the synthesis. We transform the VHDL description into a signal transition graph and then synthesize speed-independent circuits by using a previous synthesis algorithm which uses a signal transition graph as the specification method. We suggest a systematic transformation method which transforms each VHDL statement into a partial signal transition graph and then merges them into a signal transition graph. This work is a step towards to the development of an integrated framework in which we can utilizes the existing CAD tools based on VHDL. Also, this work will enable a easier migration of the current circuit designers into asynchronous circuit design.

  • PDF

Assessment of Transfer Center by Facility Design Analysis (설계분석 프로그램을 이용한 환승센터 내부 및 외부 시설물 평가)

  • Lee, Jeong-Yeop;Han, Dong-Hui;Lee, Ju-Yeong;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.169-177
    • /
    • 2009
  • Establishing a public transportation transfer system that can reduce personal automobile use in the CBD and absorb the demand, thereby reducing congestion, is a necessity. However, the current transfer system and facilities are lacking in intermodal connectivity, require long transfer times, have complex flow patterns, and are lacking in information systems and convenience. The design analysis program of this study is to develop a program that executes computations of design analysis of transfer facilities by utilizing the existing design standards for facilities such as facilities for boarding and alighting, elements for convenience, and pedestrian facilities. Developing an analytical tool through which individual or integrated design analysis can be conducted on the design standards of various facilities is an important study for improving the work accuracy and efficiency of designing an actual transfer center.