• Title/Summary/Keyword: CABAC

Search Result 42, Processing Time 0.039 seconds

A Blind Watermarking Algorithm using CABAC for H.264/AVC Main Profile (H.264/AVC Main Profile을 위한 CABAC-기반의 블라인드 워터마킹 알고리즘)

  • Seo, Young-Ho;Choi, Hyun-Jun;Lee, Chang-Yeul;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.181-188
    • /
    • 2007
  • This paper proposed a watermark embedding/extracting method using CABAC(Context-based Adaptive Binary Arithmetic Coding) which is the entropy encoder for the main profile of MPEG-4 Part 10 H.264/AVC. This algorithm selects the blocks and the coefficients in a block on the bases of the contexts extracted from the relationship to the adjacent blocks and coefficients. A watermark bit is embedded without any modification of coefficient or with replacing the LSB(Least Significant Bit) of the coefficient with a watermark bit by considering both the absolute value of the selected coefficient and the watermark bit. Therefore, it makes it hard for an attacker to find out the watermarked locations. By selecting a few coefficients near the DC coefficient according to the contexts, this algorithm satisfies the robustness requirement. From the results from experiments with various kinds and various strengths of attacks the maximum error ratio of the extracted watermark was 5.02% in maximum, which makes certain that the proposed algorithm has very high level of robustness. Because it embeds the watermark during the context modeling and binarization process of CABAC, the additional amount of calculation for locating and selecting the coefficients to embed watermark is very small. Consequently, it is highly expected that it is very useful in the application area that the video must be compressed right after acquisition.

Design of a Pipelined Binary Arithmetic Encoder for H.264/AVC (H.264/AVC를 위한 파이프라인 이진 산술 부호화기 설계)

  • Yun, Jae-Bok;Park, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.42-49
    • /
    • 2007
  • CABAC(Context-based Adaptive Binary Arithmetic Coding) among various entropy coding schemes which are used to improve compression efficiency in H.264/AVC has a high hardware complexity and the fast calculation is difficult because data dependancy exists in the bit-serial process. In this paper, the proposed architecture efficiently compose the renormalization process of binary arithmetic encoder which is an important part of CABAC used in H.264/AVC. At every clock cycle, the input symbol is encoded regardless of the iteration of the renormalization process for every input symbol. Also, the proposed architecture can deal with the bitsOutstanding up to 127 which is adopted to handle the carry generation problem and encode input symbol without stall. The proposed architecture with three-stage pipeline has been synthesized using the 0.18um Dongbu-Anam standard cell library and can be operated at 290MHz.

A Entropy Coding Method using Temporal and Spatial Correlation on HEVC (HEVC에서 시공간적 상관관계를 이용한 엔트로피 부호화 방법)

  • Kim, Tae-Ryong;Kim, Kyung-Yong;Lee, Han-Soo;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.191-194
    • /
    • 2012
  • The split flag and the skip flag in CU syntax have high correlation on spatial domain as well as temporal domain. This paper suggests a method for enhancing coding efficiency by using not only spatial correlation but also temporal correlation when coding CU information. In the CABAC case, temporal collocated CU information is used for selecting context model of the split flag and the skip flag. In the CAVLC case, current CU information is estimated from temporal collocated CU information then encoded. As a result, a coding efficiency was increased by 0.1%~0.6% in CABAC, 0.1%~0.4% in CAVLC compared with HM 3.0. This method shows better performance on lowdelay condition which uses reference frame close to current frame.

Hardware Implementation of HEVC CABAC Binary Arithmetic Encoder

  • Pham, Duyen Hai;Moon, Jeonhak;Kim, Doohwan;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.630-635
    • /
    • 2014
  • In this paper, hardware architecture of BAE (binary arithmetic encoder) was proposed for HEVC (high efficiency video coding) CABAC (context-based adaptive binary arithmetic coding) encoder. It can encode each bin in a single cycle. It consists of controller, regular encoding engine, bypass encoding engine, and termination engine. The proposed BAE was designed in Verilog HDL, and it was implemented in 180 nm technology. Its operating speed, gate count, and power consumption are 180 MHz, 3,690 gates, and 2.88 mW, respectively.

Improved CABAC Design for Near Lossless Depth Coding in HEVC (HEVC 근접 무손실 깊이 영상 부호화를 위한 향상된 CABAC 설계)

  • Choi, Jung-Ah;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.36-37
    • /
    • 2011
  • 깊이 영상은 가상 시점 영상을 합성할 때 사용되는 3차원 거리 정보로 깊이 영상 기반 렌더링에서 가상 시점을 합성할 때 사용한다. 따라서, 깊이 영상 부호화에서는 부호화 효율 못지않게 합성 영상의 화질이 중요하다. 깊이 영상의 화질은 합성된 가상 시점 영상의 화질에 큰 영향을 미친다. 따라서 고화질 깊이 영상이 필요한 경우, 부호화 손실이 적은 무손실 부호화를 사용한다. 하지만, 이와 같은 무손실 부호화 방법은 복호를 통해 원래의 깊이 영상을 그대로 복원할 수 있지만, 압축률이 낮다는 단점이 있다. 본 논문에서는 복호된 영상의 화질과 부호화 비트의 균형을 모두 고려하기 위해 근접 무손실 HEVC(high efficiency video coding)와 향상된 CABAC(context-based adaptive bnary arithmetic coding)을 이용한 새로운 깊이 영상 부호화 방법을 제안한다. 실험을 통해 제안한 방법이 합성된 가상 시점 영상의 화질 손실 없이, 기존의 무손실 및 근접 무손실 방법보다 더 나은 부호화 성능을 제공함을 알 수 있었다.

  • PDF

Advanced Image Coding based on spacial domain prediction (공간 영역 예측에 의한 정지 영상 부호화)

  • Cho, Sang-Gyu;Moon, Joon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.425-428
    • /
    • 2005
  • This paper is made up Advanced Image Coding(AIC) that combines algorithms from next generation image coding standard, H.264/MPEG-4 Part 10 advanced video coding(AVC) and still image compression standard, JPEG(Joint Photographic Experts Group). AIC combines intra frame block prediction from H.264 with a JPEG style discrete cosine transform and quantization, followed by Context-based Adaptive Binary Arithmetic Coding(CABAC) as used in H.264. In this paper, we analyzes the efficiency of the AIC algorithm and JPEG and JPEG-2000, and it presents of result.

  • PDF

Implementation of High Speed Decoder in H 204 Using Probability Distribution of a Symbol (신호의 확률분포 예측을 통한 H 264의 Entropy Decoder 설계)

  • Kim, Chung-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2967-2969
    • /
    • 2005
  • 2003년에 영상압축의 표준으로 제시된 H.264/AVC의 압축성능은 대부분 Context-based Adaptive Binary Arithmetic Codes (CAHAC)라는 새로운 엔트로피 코딩에 기인한 것이다. 그러나, CABAC의 뛰어난 성능에도 불구하고 복잡한 처리과정 때문에 하드웨어로 구현하기가 상당히 곤란하다. 곱셈기가 없는 알고리즘임에도 불구하고 영역(range), 오프셋(offset), 그리고 컨텍스트 변수들(context varivales)을 순차적으로 구해야 하기 때문이다. 이 논문에서는 한번에 최대 두 비트를 디코딩 할 수 있는 예측기법을 통하여 CARAC의 전체적인 디코딩 시간을 줄일 수 있는 방법을 제안한다. 한 비트를 디코딩하기 위해서는 두 개의 심볼(a set of binary symbols)에 대한 확률분포를 사전에 알아야 하지만, 제안된 방법에서는 두 비트를 동시에 디코딩할 수 있도록 네 개의 심볼(two sets of binary symbols)에 대한 확률 분포를 예측하여 디코더에 제공한다. 제안된 예측기법을 CABAC 디코더에 적용한 결과, 기존보다 10-13%의 복호시간을 단축하는 효과를 가졌다. 논문에서 제안된 예측기법을 통한 고속디코더의 구현은 확률을 기반으로 하는 신호처리에 사용되어 고속의 시스템을 구성하는데 효과적으로 적용될 수 있다.

  • PDF

Data hiding in partially encrypted HEVC video

  • Xu, Dawen
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.446-458
    • /
    • 2020
  • In this study, an efficient scheme for hiding data directly in partially encrypted versions of high efficiency video coding (HEVC) videos is proposed. The content owner uses stream cipher to selectively encrypt some HEVC-CABAC bin strings in a format-compliant manner. Then, the data hider embeds the secret message into the encrypted HEVC videos using the specific coefficient modification technique. Consequently, it can be used in third-party computing environments (more generally, cloud computing). For security and privacy purposes, service providers cannot access the visual content of the host video. As the coefficient is only slightly modified, the quality of the decrypted video is satisfactory. The encrypted and marked bitstreams meet the requirements of format compatibility, and have the same bit rate. At the receiving end, data extraction can be performed in the encrypted domain or decrypted domain that can be adapted to different application scenarios. Several standard video sequences with different resolutions and contents have been used for experimental evaluation.

Multi-Symbol Binary Arithmetic Coding Algorithm for Improving Throughput in Hardware Implementation

  • Kim, Jin-Sung;Kim, Eung Sup;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.273-276
    • /
    • 2018
  • In video compression standards, the entropy coding is essential to the high performance compression because redundancy of data symbols is removed. Binary arithmetic coding is one of high performance entropy coding methods. However, the dependency between consecutive binary symbols prevents improving the throughput. For the throughput enhancement, a new probability model is proposed for encoding multi-symbols at one time. In the proposed method, multi-symbol encoder is implemented with only adders and shifters, and the multiplication table for interval subdivision of binary arithmetic coding is removed. Compared to the compression ratio of CABAC of H.264/AVC, the performance degradation on average is only 1.4% which is negligible.

Design of an Efficient Binary Arithmetic Encoder for H.264/AVC (H.264/AVC를 위한 효율적인 이진 산술 부호화기 설계)

  • Moon, Jeon-Hak;Kim, Yoon-Sup;Lee, Seong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.66-72
    • /
    • 2009
  • This paper proposes an efficient binary arithmetic encoder for CABAC which is used one of the entropy coding methods for H.264/AVC. The present binary arithmetic encoding algorithm requires huge complexity of operation and data dependency of each step, which is difficult to be operated in fast. Therefore, renormalization exploits 2-stage pipeline architecture for efficient process of operation, which reduces huge complexity of operation and data dependency. Context model updater is implemented by using a simple expression instead of transIdxMPS table and merging transIdxLPS and rangeTabLPS tables, which decreases hardware size. Arithmetic calculator consists of regular mode, bypass mode and termination mode for appearance probability of binary value. It can operate in maximum speed. The proposed binary arithmetic encoder has 7282 gate counts in 0.18um standard cell library. And input symbol per cycle is about 1.