• Title/Summary/Keyword: CA model

Search Result 1,036, Processing Time 0.024 seconds

IS CALCIUM II TRIPLET A GOOD METALLICITY INDICATOR OF GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES?

  • CHUNG, CHUL;YOON, SUK-JIN;LEE, SANG-YOON;LEE, YOUNG-WOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.489-490
    • /
    • 2015
  • We present population synthesis models for the calcium II triplet (CaT), currently the most popular metallicity indicator, based on high-resolution empirical spectral energy distributions (SEDs). Our new CaT models, based on empirical SEDs, show a linear correlation below [Fe/H] ~ -0.5, but the linear relation breaks down in the metal-rich regime by converging to the same equivalent width. This relation shows good agreement with the observed CaT of globular clusters (GCs) in NGC 1407 and the Milky Way. However, a model based on theoretical SEDs does not show this feature of the CaT and fails to reproduce observed GCs in the metal-rich regime. This linear relation may cause inaccurate metallicity determination for metal-rich stellar populations. We have also confirmed that the effect of horizontal-branch stars on the CaT is almost negligible in models based on both empirical and theoretical SEDs. Our new empirical model may explain the difference between the color distributions and CaT distributions of GCs in various early-type galaxies. Based on our model, we claim that the CaT is not a good metallicity indicator for simple stellar populations in the metal-rich regime.

Equilibrium Point Model Of Urban Community Parks Based On A Centrality Index Model (중심지리론에 의한 도시근린공원의 세력균점점리론 모형)

  • 권상준;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.2
    • /
    • pp.120-128
    • /
    • 1993
  • This study suggests one hypothesis: The strength of the catchment forces of urban community parks can be represented as an equilibrium point model, which is derived from a centrality index for. That model was designed by Reilly(1931) and developed by Godlund(1956). An equilibrium point model for the catchments is represented as followed formulae: m=$\frac{CA2}{CA-CB}$ m=$\frac {{{{{L SQRT {{C}_{A}$.$ {C}_{B}} {CA-CB} Here, m is distance from the center of park A to the cetner of park B. r is radius of a circle where the catchment between park A and B is equal pointed traces. CA is index of the centrality of park A from Reilly's Law. CB is an index of the centrality of park B from Reilly's Law. L is an the distance between park A and B. The equilibrium point model is testified in the case of Chong-ju community parks. The testification has been limited to the application to such manifest outdoor recreational facilities as bentches, even though there are statistically and economically problems for a quantitative model to be testified. But the testification could be a rationale for the catchment forces of urban community parks, which was quantitatively represented that the distance between two or there parks should be related with the feasibility of the parks. Therefore, the urban community park should be planned to be located, hiving separately its identity that might be considered with the facility diversification and the locational competitiveness of a park.

  • PDF

Optimization of the growth of $CaF_2$ crystals by model experiments and numerical simulation

  • Molchanov, A.;Graebner, O.;Wehrhan, G.;Friedrich, J.;Mueller, G.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.15-18
    • /
    • 2003
  • High purity single crystalline calcium fluoride ($CaF_2$) has excellent optical transmission characteristics down to deep UV and is therefore selected as the main optical material for the next generation of lithography apparatus operating at wavelength of 157 nm. The growth of large sized $CaF_2$ single crystals with the required properties for this optical application can be achieved only by optimizing the crystal growth process by the aid of numerical simulation. This needs especially a precise calculation of the heat transport and temperature distribution in the solid and liquid $CaF_2$ under crystal growth conditions. As $CaF_2$ is considered to be semitransparent, the internal radiative heat transfer in $CaF_2$ plays an decisive role in the simulation of the heat transport. On the other hand it is very difficult to obtain quantitative experimental data for evaluating numerical models as $CaF_2$ is extremely corrosive at high temperatures. In this work we present a newly developed experimental technique to perform temperature measurements in $CaF_2$-crystal as well as in the melt under conditions of crystal growth process. These experimental results are compared to calculated temperature data, which were obtained by using different numerical models concerning the internal heat transfer in semitransparent $CaF_2$. It will be shown, that an advanced model, which was developed by the authors, gives a much better agreement with experimental data as a standard model, which was taken from the literature.

Laboratory-scale Experiment and Model Calculation on the Washout Mechanism of Asian Dust Particles

  • Ma, Chang-Jin;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.161-168
    • /
    • 2013
  • In this study, an investigation was conducted to assess the washout mechanism of Asian dust particles through both laboratory-scale experiment and model calculation. To artificially simulate Asian dust particle, $CaCO_3$ particles were generated inside an experimental chamber. They were then scavenged by the artificial rain drops. The abundant $CaCO_3$ particles scavenged on a rain drop were successively identified by SEM observation. The concentrations of Ca in residual $CaCO_3$ particles on individual droplet were quantified by PIXE analysis. There was a tendency toward a high accumulation of Ca on a relatively small drop (e.g., <1.0 mm diameter). It is thus suggested that smaller rain drops can effectively scavenge a significant amount of Asian dust particles in ambient atmosphere. The numerical estimation can account for 92.1% and 83.2% of Ca that were measured in small (<1.0 mm diameter) and large (>2.0 mm diameter) size drops, respectively.

Spatial Simulation of Urban Expansion Area using GIS and CA Technologies (GIS-CA 기법을 이용한 도시확산 지역의 공간적 모의)

  • Kim, Dae-Sik;Chung, Ha-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.4 s.25
    • /
    • pp.9-18
    • /
    • 2004
  • The purpose or this study is to simulate spatially the urban expansion phenomena with a cellular automata (CA) technique using GIS. A study area, Suwon city, was selected for test of model verification and application with the classified land-use maps of three data years: 1986, 1996, and 2000. The urbanized potential maps were generated with seven criteria of one geographic factor (slope of land), and six accessibility factors (time distances from city, national road, Seoul, station, and built-up boundary), considering their weighting values, which were optimized by WSM (weighted scenario method for intensity order) combined a ranking method and a AHP technique. The optimized weighting values at the urban expansion between 1986 and 1996 were applied to verify the CA model for the other expansion between 1996 and 2000. The results of model application showed that urban sprawl phenomena of the urban expansion toward rural area can be simulated spatially and temporally with several boundary conditions considering various scenarios for the criteria and parameters of the model. Ultimately, this study can contribute to reference data for land-use planning of urban fringe areas.

An Efficient PSI-CA Protocol Under the Malicious Model

  • Jingjie Liu;Suzhen Cao;Caifen Wang;Chenxu Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.720-737
    • /
    • 2024
  • Private set intersection cardinality (PSI-CA) is a typical problem in the field of secure multi-party computation, which enables two parties calculate the cardinality of intersection securely without revealing any information about their sets. And it is suitable for private data protection scenarios where only the cardinality of the set intersection needs to be calculated. However, most of the currently available PSI-CA protocols only meet the security under the semi-honest model and can't resist the malicious behaviors of participants. To solve the problems above, by the application of the variant of Elgamal cryptography and Bloom filter, we propose an efficient PSI-CA protocol with high security. We also present two new operations on Bloom filter called IBF and BIBF, which could further enhance the safety of private data. Using zero-knowledge proof to ensure the safety under malicious adversary model. Moreover, in order to minimize the error in the results caused by the false positive problem, we use Garbled Bloom Filter and key-value pair packing creatively and present an improved PSI-CA protocol. Through experimental comparison with several existing representative protocols, our protocol runs with linear time complexity and more excellent characters, which is more suitable for practical application scenarios.

Relationship between PAHs Concentrations in Ambient Air and Deposited on Pine Needles

  • Chun, Man-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.26
    • /
    • pp.4.1-4.6
    • /
    • 2011
  • Objectives: This study was carried out to determine whether or not pine needles can be used as passive samplers of atmospheric polycyclic aromatic hydrocarbons (PAHs) using the correlation between accumulated PAH concentrations in air (Ca, ng/$m^3$) and those deposited on pine needles (Cp, ng/g dry). Methods: PAHs in ambient air was collected using low volume PUF sampler and pine needles was gathered at same place for 7 months. Results: A good correlation ($R^2$=0.8582, p<0.05) was found between Ca and Cp for PAHs with a higher gaseous state in air (AcPy, Acp, Flu, Phen, Ant, Flt, Pyr, BaA and Chry), but there was a poorer correlation ($R^2$=0.1491, p=0.5123) for the PAHs with a lower gaseous state (BbF, BkF, BaP, DahA, BghiP and Ind123). A positive correlation ($R^2$=0.8542) was revealed between the logarithm of the octanol-air partitioning coefficient ($logK_{oa}$) and Cp/Ca for the PAHs with a higher gaseous state in air, but there was a negative correlation ($R^2$=0.8131) for the PAHs with a lower gaseous state. The Ca-Cp model could not be used to estimate PAHs concentrations in air using deposited PAHs concentrations on pine needles, but the logKoa-Cp/Ca model could be used. Conclusions: It was found that pine needles can be used as passive samplers of atmospheric PAHs.

Kinetic study about the effect of electric field and contact time of high voltage impulse on reduction of Ca2+ concentration (고전압 임펄스 공정의 전계와 접촉시간이 Ca2+ 농도 저감에 미치는 영향의 속도론 연구)

  • Kim, Dam-Ha;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2021
  • High voltage impulse (HVI) has been gained attention as an alternative technique that could control the CaCO3 scale problems encountered in water main, pipe, cooling tower and heat exchanger vessels. The aim of this study was to investigate the effect of electric field (E) and contact time (t) of HVI on reduction of Ca2+ concentration at two different temperatures of 25℃ and 60℃. A kinetic model on the effect of E and t was investigated too. As the E and t increased, the Ca2+ concentration decreased more than that of the control (= no HVI). The Ca2+ concentration decreased up to 81% at 15 kV/cm at 60℃, which was nearly 2 times greater than the control. With these experimental data-set of reduction of Ca2+ concentration under different E and t, the kinetic model was developed. The relationship between E and t required to reduce the concentration of Ca2+ by 30% was modeled at each temperature. The empirical model equations were; E0.83· t = 60.3 at 25℃ and E0.08· t = 1.1 at 60℃. These equations state the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increment of E and vice versa.