• Title/Summary/Keyword: CA/C ratio

Search Result 732, Processing Time 0.041 seconds

Effect of Water Addition Ratio, Stirring Time and Ca Salts on Textural Properties of Soygel (콩묵 제조시 가수량, 교반시간 및 Ca염의 양이 텍스쳐 특성에 미치는 영향)

  • Park, Hye-Jeen;Ko, Young-Su;Choi, Hee-Sook;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.329-335
    • /
    • 1995
  • Rheological properties of whole soybean gel(soygel) were investigated as affected by the water addition ratio, stirring time and Ca salts. The soygel was prepared by suspension of whole soy flour(WSF, 300 mesh) in boiling water, addition of sodium alginate and Ca salts followed by thorough mixing and gel formation at $4^{\circ}C$. The texture properties of hardness, adhesiveness and cohesiveness of the gel were increased as the stirring time prolonged from 5 to 30 minutes. From the results of the rheological and sensory properties, 20 minutes of stirring time was selected for whole soybean gel preparation. Eventhough increase in water addition ratio from 8 to 12 times(water/WSF, v/w) resulted a decrease in hardness and adhesiveness, 10 times ratio was chosen as proper the water addition based on textural uniformity. Among the Ca salts, $CaSO_4$ produced the highest hardness followed by Ca $gluconate-CaSO_4$ mixture(413g) and Ca gluconate at the water addition level of 10 times. In order to determine the amounts of Ca salts, and 0.125g of Ca gluconate or $CaSO_4$ per g WSF were found to be optimum in terms of textural and sensory properties. The proper mixing ratio of Ca gluconate and $CaSO_4$ was found to be 50 : 50, 25 : 75 and 0 : 100.

  • PDF

Hot Rolling Properties of Non-combustible AZ31-xCa Magnesium Alloys (난연성 AZ31-xCa 마그네슘합금의 열간압연 특성)

  • Yim C. D.;You B. S.;Lee J. S.;Kim W. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.55-62
    • /
    • 2004
  • In this study, the effects of Ca content and processing variables on hot rolling properties of gravity cast AZ31-xCa alloys were evaluated systematically. The number and length of side crack were decreased with increasing preheating temperature and decreasing reduction ratio per pass and Ca content. The UTS and YS were not strongly dependent on the Ca content but the elongation decreased with increasing Ca content. The decrease of elongation in Ca containing alloys was least when the sheets were fabricated under preheating temperature of $400^{\circ}C$ and reduction ratio per pass of $15\%$. The sheets had the sound external features with little side cracks by homogenization of gravity cast AZ31-xCa alloys before hot rolling. In the cases of AZ31-xCa alloys containing under $1wt.\%$ Ca, the annealed sheets after homogenization and hot rolling had the similar tensile properties to those of AZ31 sheet.

  • PDF

Use of Wet Chemical Method to Prepare β Tri-Calcium Phosphates having Macro- and Nano-crystallites for Artificial Bone

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.670-675
    • /
    • 2016
  • Calcium phosphate crystallites were prepared by wet chemical method for use in artificial bone. In order to obtain ${\beta}$-tricalcium phosphate (TCP), nano-crystalline calcium phosphate (CaP) was precipitated at $37^{\circ}C$ and at $pH5.0{\pm}0.1$ under stirring using highly active $Ca(OH)_2$ in DI water and an aqueous solution of $H_3PO_4$. The precipitated nano-crystalline CaP solution was kept at $90^{\circ}C$ for the growth of CaP crystallites. Through the growing process of CaP crystallites, we were able to obtain various sizes of rectangular CaP crystallites according to the crystal growing times. Dry nano-crystalline CaP powders at $37^{\circ}C$ were mixed with dry macro-crystalline CaP crystallites and the shaped mixture sample was fired at $1150^{\circ}C$ to make a ${\beta}-TCP$ block. Several tens of nm powders were uniformly coated on the surface, which was comprised of powders of several tens of ${\mu}m$, using a vibrator. The mixing ratio between the nanometer powders and the micrometer powders greatly affected the mechanical strength of the mixture block; the most appropriate ratio of these two materials was 50 wt% to 50 wt%. The sintered block showed improved mechanical strength, which was caused by the solid state interaction between the nano-crystalline ${\beta}-TCP$ and the macro-crystalline ${\beta}-TCP$.

Effects of $Ca^{2+}\;:\;K^+$ Ratio in Nutrient Solution on the Growth and Quality of Marjoram(Origanum majorana) and Oregano(Origanum vulgare) Grown in Hydroponic Culture (수경재배시 Ca 및 K 이온의 조성비율 차이가 마죠람과 오레가노의 생육 및 품질에 미치는 영향)

  • Park, Kuen-Woo;Na, Cheol-Wook;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.240-244
    • /
    • 2003
  • The purpose of this study was to investigate a proper $Ca^{2+}\;:\;K^+$ ratio in nutrient solution to produce marjoram and oregano by hydroponics. Two herbs were grown for 40 days with the $Ca^{2+}\;:\;K^+$ ratio of 3.5;13, 4.5:11(standard herb's nutrient solution), 5.5:9 and 6.5:7mM${\cdot}L^{-1}$ of herb's nutrient solution developed by European Vegetable R &D Center, Belgium. The ratio of 5.5:9, and 6.5:7 mM${\cdot}L^{-1}$ showed better results in growth of marjoram than other treatments. Vitamin C contents and amounts of esential oil were the highest in the ratio of 5.5:9 and 6.5:7, respectively. Inoregano, the growth and vitamin C contents were the highest in the ratio of 5.5:9 and 6.5:7 mM${\cdot}L^{-1}$, respectively. The content (%) and amount (mg/plant) of essential oil were the highest in the ratio of 6.5:7mM${\cdot}L^{-1}$. These results indicated that 5.5:9 and 6.5:7 mM${\cdot}L^{-1}$were proper $Ca^{2+}\;:\;K^+$ ratio of nutrient solution of marjoram and oregano, respectively, by hydropoinics.

Self-Healing Properties in Cracking of Blast Furnace Slag Cement Paste (고로 슬래그 시멘트 페이스트 균열에서의 자기치유 특성)

  • Lee, Seung-Heun;Kang, Kook-Hee;Lim, Young-Jin;Lee, Se-Jin;Park, Byeong-Seon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • This study investigated the self-healing properties of blast furnace slag cement paste sample with $Na_2SO_4$ as a blast furnace slag activator after conducting the permeability test. Self-healing properties were examined by crack filling ratio and quantification of self-healing products. The degree of self-healing was evaluated by the crack filling ratio, and the crack filling ratio was analyzed by panoramic analysis using BSE-DIP for objectivity. The average crack filling ratio showed a tendency of decreasing from the upper part of the specimen to the lower part as the average of the top part was 18%, the middle part was 7% and the bottom part was 5% on average. The maximum crack filling ratio was 44% and the minimum crack filling ratio was 3%. The residual self-healing product after the permeability test contained a large amount of Ca element and Al element derived from the blast furnace slag, and the Si element was mainly present near the crack surface. The most abundant minerals in self-healing products were about 68% C-A-H. $CaCO_3$ was about 13% and C-A-S-H was about 8%. Three minerals accounted for 90% of self-healing products. C-A-H was mainly present at a part slightly distant from the crack surface and showed an angular or acicular shape. The C-A-S-H was generated on the surface naturally connected to the existing specimen, and the $CaCO_3$ was generally observed on the surface of the specimen or the inside of the crack.

Hydrothermal Reaction Characteristics on the ALC of Pitchstone-Lime System (송지암-석회계 ALC에 대한 수열반응 특성 - 배합비에 따른 영향)

  • 최병현;김순환;안용관;이종민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.660-666
    • /
    • 1992
  • Pitchstone reacted with CaO in hot water(9$0^{\circ}C$) and increased its sedimentary volume by forming Ca(OH)2 and calcium silicate hydrates. ALC was prepared from gel at 9$0^{\circ}C$ and subsequently autoclaved at 18$0^{\circ}C$ by using the property of swelling and the physical properties of ALC was investigated with experimental conditions. When the ratio of pitchstone/CaO was 2 (CaO/SiO2 mol ratio=0.81), bulk density, modulus of rupture and thermal conductivity of the ALC were 0.75g/㎤, 73kg/$\textrm{cm}^2$ 0.150 kcal/m.hr.$^{\circ}C$, respectively. The crystalline phase of it was mainly tobermorite. Therefore ALC was turned out to be much lightweighted and good thermal insulation.

  • PDF

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases (C-S-H 상의 염소이온 흡착 메커니즘 규명을 위한 반응 작용 실험)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.

Effect of Heating Time and Mixed Coagulants for Prepared SPI Tofu (분리대두단백 두부의 제조를 위한 가열시간 및 혼합응고제의 영향)

  • Ku, Kyung-Hyung;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.26-30
    • /
    • 1994
  • The purpose of this study was to investigate the effects of heating times of soy protein isolate(SPI) and mixing ratio of coagulants mixture on water holding capacity(WHC) and oil absorption capacity (OAC) of SPI, texture properties and yield of tofu. The effect of heating at $100^{\circ}C$ on the amounts of coagulants required for coagulation showed that the amounts of $CaCl_{2},\;MgCl_{2}$ and GDL decreased as the heating time extended to $6{\sim}9$ minutes while $CaSO_{2}$ was changed little. The tofu yield showed maximum for the tofu prepared by 6 minutes boiling and coagulation with $CaSO_{4}$. The WHC of SPI was significantly reduced by heating at $100^{\circ}C$ while OAC was rather increased until 9 minutes of heating. The textural properties of SPI tofu coagulated with mixed coagulants$(CaSO_{4}-GDL,\;CaSO_{4}-CaCl_{2},\;CaCl_2-GDL)$ showed that softer tofu was obtained as the ratio of $CaSO_{2}$ increased and harder tofu as the ratio of $CaCl_{2}$ and GDL increased. The maximum and minimum tofu yields were prepared from 100% of $CaSO_{2}$ and 100% of GDL, respectively. Organoleptic properties showed that more uniform and tender tofu were obtained with higher portion of $CaSO_{2}$ in the mixed coagulants and higher intensity of sourness and bitterness were scored as the GDL and $CaCl_{2}$ added more.

  • PDF

Electrical Properties of (Ba0.27CaSr)(Zr0.95Ti0.05)O3 Dielectric Ceramic with C0G Temperature Characteristics

  • Hong Sun Lee;Jung Rag Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.6
    • /
    • pp.662-667
    • /
    • 2024
  • In this study, the electrical properties of a C0G (class 1 ceramic) dielectric composition with internal reducibility, specifically (Ba0.27CaSr)(Zr0.95Ti0.05)O3, were investigated by fixing Ba at the A site and varying the Ca/Sr molar ratio. The potential application of this composition in high-permittivity C0G MLCCs was examined. The powder was calcined at 1,150℃ for 2 hours, as determined by TG-DTA analysis, and the resulting powder was ground to achieve a particle size (D50) of 0.35 to 0.4 ㎛ and a specific surface area (BET) of 4.5 to 5.0 g/m2. With a Ca/Sr molar ratio of 0.3, the composition (Ba0.27Ca0.17Sr0.56) (Zr0.95Ti0.05)O3 exhibited electrical properties with a permittivity of 41.9, a loss of less than 0.008%, and an insulation resistance exceeding 2.2×1013 Ω. The feasibility of using this composition for high-capacitance C0G MLCCs was confirmed.

Bi(Pb)SrCaCuO superconductor fabricated by interdiffusion of SrCaCuO and BiPbCuO double layers (SrCaCuO와 BiPbCuO 이중층의 상호확산에 의해 제조된 Bi(Pb)SrCaCuO 초전도체)

  • 최효상;이중근;정동철;한병성
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.680-689
    • /
    • 1996
  • SrCaCuO와 BiPbCuO 화합물로 이루어진 이중층시료가 만들어 졌으며, 소결과정에서 나타나는 확산과 입자간의 상호작용으로 108K의 임계온도를 나타내었다. 이 시료는 820.deg. C에서 0-210 시간동안 소결되었다. 초전도체의 생성, 성장메카니즘과 임계온도의 관계가 연구되었으며, 최적조건은 820.deg. C에서 210시간 소결하고 SrCaCuO와 BiPbCuO의 도포비가 1:0.6인 시편에서 나타났다. 또한 이중층시료에서 가장 좋은 조성비는 S $r_{2}$C $a_{2}$C $u_{2}$ $O_{x}$와 B $i_{1.9}$P $b_{0.5}$C $u_{3}$ $O_{y}$ 이었다.다.

  • PDF