• Title/Summary/Keyword: C70

Search Result 8,755, Processing Time 0.049 seconds

Physiological Changes of Juvenile Abalone, Haliotis sieboldii Exposed to Acute Water-temperature Stress (급격한 수온 스트레스에 따른 시볼트전복, Haliotis sieboldii 치패의 생리적 변화)

  • Kim Tae-Hyung;Kim Kyung-Ju;Choe Mi-Kyung;Yeo In-Kyu
    • Journal of Aquaculture
    • /
    • v.19 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • This study was conducted to investigate changes of hemolymph count, antioxidant enzyme activities (catalase: CAT and superoxide dismutase: SOD) and Heat Shock Protein 70 (HSP70) mRNA in hemolymph, hepatopancreas and gill of abalone (Haliotis sieboldii) exposed to various water temperatures. Abalones were exposed to 10, 15, 20, 25 or $30^{\circ}C$ for 0, 6, 12, 24 or 48 hours. Survival rate of abalone was 100% at 10, 15, 20 and $25^{\circ}C$, but 0% at $30^{\circ}C$. Hemolymph counts increased at lower water temperatures (10 and $15^{\circ}C$) and decreased at $30^{\circ}C$. SOD activity decreased immediately after exposure to lower or higher water temperatures compared to the control ($20^{\circ}C$) with an exception at $30^{\circ}C$ where the activity increased. At lower temperatures, SOD activity rose high after 24 hours, but decreased again at 48 hours. At $25^{\circ}C$, it decreased compared to the control. CAT activity decreased immediately after exposure to 10 or $25^{\circ}C$ compared to the control, and then was recovered to the initial level after increment. At $15^{\circ}C$, CAT activity was high after 6 hours, and then was recovered to the initial level after increment. At $30^{\circ}C$, the activity decreased throughout the experiment. The HSP70 mRNA expression in gill increased at lower temperatures compared to the control ($20^{\circ}C$) and $25^{\circ}C$. In this study, rapid change of wale, temperature caused stress response in abalone which had been raised at $20^{\circ}C$. At molecular level, HSP70 was expressed rapidly, but antioxidant enzymes like SOD and CAT were expressed later than HSP70. At 15 and $25^{\circ}C$ of water temperatures, the HSP70, SOD and CAT expression were stable with time. However, at $30^{\circ}C$, all abalone died possibly because they could not develop resistance to high temperature.

Effects of Internal Temperature on Physical Properties of Hanwoo Beef Eye of Round and Center of Heel during Boiling (열탕 가열 중 한우 홍두깨살 및 아롱사태의 중심온도가 가열감량, 보수력, 표면색도 및 조직감에 미치는 영향)

  • Moon, Yoon-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.403-412
    • /
    • 2013
  • In this experiment, the effect of internal temperature on the physical properties of Hanwoo beef eye of round (ER) and center of heel (CH) during boiling was investigated. The pH value of Hanwoo beef ER and CH began to increase significantly (p<0.05) compared to raw meat around an internal temperature of $40^{\circ}C$ and $50^{\circ}C$, respectively; in addition, it showed the biggest changes around $70^{\circ}C$ and $80^{\circ}C$, respectively. No significant difference beyond the temperatures noted above was observed. The $L^*$ value of Hanwoo beef ER and CH began to increase significantly around an internal temperature of $50^{\circ}C$ and $60^{\circ}C$, respectively, while the $a^*$ and $b^*$ values kept decreasing up to $80^{\circ}C$ (p<0.05). None of these values showed a significant difference beyond the threshold temperature ($50{\sim}60^{\circ}C$ for the $L^*$ value, $80^{\circ}C$ for the $a^*$ and $b^*$ values). Hanwoo beef ER and CH showed the highest cooking loss and lowest water holding capacity around an internal temperature of $60^{\circ}C$ and $70^{\circ}C$, respectively. No significant difference was observed beyond those temperatures. The hardness, gumminess and chewiness of Hanwoo beef ER and CH showed the biggest change around an internal temperature of $70^{\circ}C$ and $80^{\circ}C$, respectively, while their cohesiveness showed the biggest change around $60^{\circ}C$ and $70^{\circ}C$, respectively. No significant difference was observed beyond those temperatures. The springiness of Hanwoo beef ER and CH shown began to increase significantly around an internal temperature of $70^{\circ}C$ and $80^{\circ}C$, respectively, while it began to decrease significantly around $90^{\circ}C$ (p<0.05). Hanwoo beef ER showed a faster change in its physical properties due to boiling compared to CH.

Flexural Properties according to Change of Polymerization Temperature of Autopolymerized Resin for Orthodontic (치과 교정용 자가중합형 Resin의 중합 온도 변화에 따른 굽힘 특성)

  • Lee, Gyu Sun
    • Journal of dental hygiene science
    • /
    • v.15 no.3
    • /
    • pp.259-264
    • /
    • 2015
  • For this experiment, specimen was manufactured by injecting polymer and monomer into silicon mold with volume ratio of 2.5:1 based on ISO 20795-2 so that average thickness, width and length of specimen would be maintained as 3.3 mm, 10.0 mm and 65.0 mm, respectively depending on spray on technique. Specimen was divided into 3 groups ($25^{\circ}C$, $40^{\circ}C$, $70^{\circ}C$) depending on polymerization temperature and 10 specimen was manufactured for each group and it was polymerized in water tank of ${\pm}1^{\circ}C$ under the setting condition of polymerization time of 15 minutes and pressure of 3 bar. After keeping specimen in distilled water of $37^{\circ}C$ for over 48 hours before experiment, flexural strength (FS) and elasticity modulus (EM) of specimen being tested by using Intron (3344; Instron; Instron). SPSS ver. 16.0 was used for analysis and post-hoc test of Scheffe was performed after using one-way ANOVA. When comparing mean value of FS of resin for orthodontics, it was represented in the range of 71.500 MPa for $25^{\circ}C$ group, 74.920 MPa for $40^{\circ}C$ group and 76.880 MPa for $70^{\circ}C$ group and difference was shown in the order of $25^{\circ}C$ group <$40^{\circ}C$ group <$70^{\circ}C$ group but such difference was not significant statistically (p=0.052). Result of EM mean value of resin for orthodontics was more polymerization temperature was high, the more was significant difference represented in the order of $25^{\circ}C$ group <$40^{\circ}C$ group <$70^{\circ}C$ group (p<0.039).

A Comparative Study on the Characteristics of the Pure water and Ethanol Carbon Nanofluids for Applying Solar Collector (태양열 집열기 적용을 위한 순수 물과 에탄올 탄소나노유체의 특성 비교 연구)

  • An, Eoung-Jin;Park, Sung-Seek;Chun, Won-Gee;Park, Yoon-Chul;Kim, Nam-Jin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.194-199
    • /
    • 2012
  • In this study, for increasing the efficiency of solar collector, the thermal conductivities and viscosities of the pure water and ethanol oxidized multi-walled carbon nanofluids were measured. Nanofluids were manufactured by ultra-sonic dispersing oxidized multi-walled carbon nanotubes(OMWCNTs) in the pure-water and ethanol at the rates of 0.0005 ~ 0.1 vol%. the Thermal conductivities and viscosities of manufactured nanofluids were measured at the low temperature($10^{\circ}C$), the room temperature($25^{\circ}C$) and the high temperature($70^{\circ}C$). For measuring thermal conductivity and viscosity, we used Transient Hot-wire Method and Rotational Digital Viscometer, respectively. As a result, under given temperature conditions, thermal conductivity of the 0.1 vol% pure-water nanofluid improved 7.98% ($10^{\circ}C$), 8.34% ($25^{\circ}C$), and 9.14% ($70^{\circ}C$), and its viscosity increased by 37.08% ($10^{\circ}C$), 33.96% ($25^{\circ}C$) and 21.64% ($70^{\circ}C$) than the base fluids. Thermal conductivity of the 0.1 vol% ethanol nanofluids improved 33.72% ($10^{\circ}C$), 33.14% ($25^{\circ}C$), and 32.36% ($70^{\circ}C$), and its viscosity increased by 37.93% ($10^{\circ}C$), 31.92% ($25^{\circ}C$) and 29.42% ($70^{\circ}C$) than the base fluids.

  • PDF

INVOLVEMENT OF p27CIP/KIP IN HSP25 OR INDUCIBLE HSP70 MEDIATED ADAPTIVE RESPONSE BY LOW DOSE RADIATION

  • Seo, Hang-Rhan;Chung, Hee-Yong;Lee, Yoon-Jin;Baek, Min;Bae, Sang-Woo;Lee, Su-Jae;Lee, Yun-Sil
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.285-292
    • /
    • 2006
  • Thermoresistant (TR) clones of radiation-induced fibrosarcoma (RIF) cells have been reported to show an adaptive response to 1cGy of low dose radiation, and HSP25 and inducible HSP70 are involved in this process. In this study, to further elucidate the mechanism by which HSP25 and inducible HSP70 regulate the adaptive response, HSP25 or inducible HSP70 overexpressed RIF cells were irradiated with 1cGy and the cell cycle was analyzed. HSP25 or inducible HSP70 overexpressed cells together with TR cells showed increased G1 phase after 1cGy irradiation, while RIF cells did not. $[^3H]-Thymidine$ and BrdU incorporation also indicated that both HSP25 and inducible HSP70 are involved in G1 arrest after 1cGy irradiation. Molecular analysis revealed upregulation of p27Cip/Kip protein in HSP25 and inducible HSP70 overexpressed cells, and cotransfection of p27Cip/Kip antisense abolished the induction of the adaptive response and 1cGy-mediated G1 arrest. The above results indicate that induction of an adaptive response by HSP25 and inducible HSP70 is mediated by upregulation of p27Cip/Kip protein, resulting in low dose radiation-induced G1 arrest.

Quality changes in the lotus root frozen under different conditions (냉동조건에 따른 연근의 품질 변화)

  • Park, Seung-Jong;Song, Kyung Bin
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.44-50
    • /
    • 2015
  • This study was performed to optimize the preparation of frozen lotus roots. Prior to freezing, an optimal blanching condition at $100^{\circ}C$ for 5 min was established, based on the microbial growth, texture, total phenolic content (TPC), and sensory evaluation results. The blanched samples were then frozen under various freezing conditions ($-20^{\circ}C$ in a freezer for 2 hr, $-70^{\circ}C$ in a gas nitrogen convection chamber for 7 min, and $-196^{\circ}C$ in liquid nitrogen for 20 sec), and their qualities after thawing were determined. The scanning electron microscopic analysis indicated that the microstructure of the sample frozen at $-70^{\circ}C$ was similar to that of the control sample, compared with the other freezing conditions (-20 and $-196^{\circ}C$). The antioxidant activities of the frozen samples decreased compared to those of the control, but there was no significant (p<0.05) difference among the treatments. In terms of TPC, the samples frozen at -70 and $-196^{\circ}C$ had significantly (p<0.05) higher values than the sample frozen at $-20^{\circ}C$. In addition, the drip loss of the sample frozen at $-20^{\circ}C$ was higher than those of the other frozen samples. These results suggest that freezing at $-70^{\circ}C$ in a gas nitrogen convection chamber can be an optimal freezing method of producing high-quality frozen lotus roots.

Effect of Freezing Temperature on the Rehydration Properties of Freeze-Dried Rice Porridge (동결건조 쌀죽의 재수화 특성에 미치는 동결온도의 영향)

  • Koh, So-mi;Rhim, Jong-Whan;Kim, Jeong-Mok
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.509-512
    • /
    • 2011
  • To study the effect of freezing rate on the quality of freeze-dried rice porridge, freeze-dried rice porridge products were prepared with rice porridge pre-frozen at three different temperatures of -20, -40, and -70$^{\circ}C$. The porridge properties such as microstructure, mechanical properties, textural properties, and rehydration rate were determined. Scanning electron microscopy images indicated that fewer air cells were obtained with a larger size of freeze-dried rice porridge frozen at -20$^{\circ}C$ compared with that frozen at -40 and -70$^{\circ}C$. In contrast, quick frozen products at -70$^{\circ}C$ had more dense texture with higher mechanical strength, whereas slow frozen products exhibited higher rehydration rates than those of quick frozen products. In conclusion, the proper choice of pre-freezing temperature plays a decisive role when preparing freeze-dried rice porridge with optimum quality and convenience.

Identification of Ku70/Ku80 as ADD1/SREBP1c Interacting Proteins

  • Lee, Yun Sok;Koh, Hae-Young;Park, Sang Dai;Kim, Jae Bum
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2004
  • In vertebrates, multisubunit cofactors regulate gene expression through interacting with cell-type- and gene-specific DNA-binding proteins in a chromatin-selective manner. ADD1/SREBP1c regulates fatty acid metabolism and insulin-dependent gene expression through binding to SRE and E-box motif with dual DNA binding specificity. Although its transcriptional and post-translational regulation has been extensively studied, its regulation by interacting proteins is not well understood. To identify cellular proteins that associate with nuclear form of ADD1/SEBP1c, we employed the GST pull-down system with Hela cell nuclei extract. In this study, we demonstrated that Ku proteins interact specifically with ADD1/SREP1c protein. GST pull-down combined with peptide sequencing analysis revealed that Ku80 binds to ADD1/SREBP1c in vitro. Additionally, western blot analysis showed that Ku70, a heterodimerizing partner of Ku80, also associates with ADD1/SREBP1c. Furthermore, co-transfection of Ku70/Ku80 with ADD1/SREBP1c enhanced the transcriptional activity of ADD1/SREBP1c. Taken together, these results suggest that the Ku proteins might be involved in the lipogenic and/or adipogenic gene expression through interacting with ADD1/SREBP1c.

A Study on Seam Strength of Palyester/Cotton brended Fabrics in the Sewing (폴리에스테르/면 혼방직물의 봉제시 봉합강도에 관한 연구)

  • Park, Chae-ryun;Kim, Soon-boon
    • Fashion & Textile Research Journal
    • /
    • v.2 no.3
    • /
    • pp.234-238
    • /
    • 2000
  • In this study it was measured seam strength of T/C which has the different processing methods and density. Also it was measured seam strength by the change of angle in the pattern and the kinds of threads. The results of this study are as follows; The seam strength is stronger in order of $90^{\circ}/90^{\circ}$ > $0^{\circ}/0^{\circ}$ > $70^{\circ}/-70^{\circ}$ > $70^{\circ}/70^{\circ}$ > $60^{\circ}/60^{\circ}$ > $60^{\circ}/-60^{\circ}$ > $30^{\circ}/30^{\circ}$ > $30^{\circ}/-30^{\circ}$ > $45^{\circ}/-45^{\circ}$ > $45^{\circ}/45^{\circ}$ by the cutting directions, in order of T/C3>T/C1>T/C4>T/C2 by the samples and in order of 60's/3>40's/2>60's/2>50's/2 by the threads.

  • PDF