• 제목/요약/키워드: C3H/10T1/2 cells

검색결과 198건 처리시간 0.036초

Effects of Mizoribine on MHC-Restricted Exogenous Antigen Presentation in Dendritic Cells

  • Song, Young-Cheon;Han, Shin-Ha;Kim, Hyun-Yul;Kim, Kwang-Hee;Kwon, Jeung-Hak;Lee, Sang-Jin;Ha, Nam-Joo;Lee, Young-Hee;Lee, Chong-Kil;Kim, Kyung-Jae
    • Archives of Pharmacal Research
    • /
    • 제29권12호
    • /
    • pp.1147-1153
    • /
    • 2006
  • Mizoribine (MZR) has been shown to possess immunosuppressive activity that selectively inhibits the proliferation of lymphocytes by interfering with inosine monophosphate dehydrogenase. The efficacy of MZR is not only in patients who have had renal transplantation, but also in patients with rheumatoid arthritis (RA), lupus nephritis, and primary nephritic syndrome. Because the exact mechanism of its immunosuppressive action is not clear, the object of this study was to examine the ability of MZR to regulate the antigen presenting cells (APCs), dendritic cells (DCs). In this work, we tested whether MZR ($1{\sim}10\;{\mu}g/mL$) could inhibit the cross-presentation of DCs. DC2.4 cells ($H-2K^{b}$) or bone marrow-derived DCs (BM-DCs) generated from BM cells of C57BL/6 mouse ($H-2K^{b}$) were cultured in the presence of MZR with OVA-microspheres, and the amount of OVA peptide-class I MHC complexes was measured by a T cell hybridoma, B3Z, that recognizes OVA (257-264 : SIINFEKL)-$H-2K^{b}$ complex and expresses-galactosidase. MZR profoundly inhibited the expression of SIINFEKL-$H-2K^{b}$ complexes. This inhibitory activity of MZR appeared to affect the phagocytic activity of DCs. MZR also decreased IL-2 production when we examined the effects of MZR on $CD4^{+}$ T cells. These results provide an understanding of the mechanism of immunosuppressive activity of MZR on the inhibition of MHC-restricted antigen presentation and phagocytic activity in relation to their actions on APCs.

Differential Effect of MyD88 Signal in Donor T Cells on Graft-versus-Leukemia Effect and Graft-versus-Host Disease after Experimental Allogeneic Stem Cell Transplantation

  • Lim, Ji-Young;Ryu, Da-Bin;Lee, Sung-Eun;Park, Gyeongsin;Choi, Eun Young;Min, Chang-Ki
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.966-974
    • /
    • 2015
  • Despite the presence of toll like receptor (TLR) expression in conventional $TCR{\alpha}{\beta}$ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 ($H-2^b$) ${\rightarrow}$ B6D2F1 ($H-2^{b/d}$), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type ($H-2^d$) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-${\gamma}$ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-${\gamma}$ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT.

마가목 열매에서 추출한 Cryptochlorogenic Acid 처리에 의한 조골세포 분화 촉진 효능 (Effect of Cryptochlorogenic Acid Extracted from Fruits of Sorbus commixta on Osteoblast Differentiation)

  • 김경민;김태훈;장원구
    • 한국식품영양과학회지
    • /
    • 제46권3호
    • /
    • pp.314-319
    • /
    • 2017
  • 본 연구에서는 마가목 열매에서 추출한 chlorogenic acid의 유사체인 cryptochlorogenic acid(CCA)가 조골세포 분화에 미치는 영향에 대해서 알아보았다. 먼저 세포독성 여부를 확인하기 위해 MTT assay를 수행하였고 독성이 없다고 확인된 $5{\mu}M$의 농도에서 실험을 진행하였다. 그리고 조골세포로 분화할 수 있는 다분화능 세포인 C3H10T1/2와 조골세포인 MC3T3-E1에 CCA를 처리하여 표지 유전자인 Id1, Dlx5, Runx2의 발현을 확인하였다. 확인한 결과 표지유전자들의 발현이 대조군에 비교해서 증가한 것을 확인하였고, 그중 조골세포의 핵심 전사조절인자인 Runx2의 전사활성에 미치는 영향을 알아보기 위해 promoter assay를 수행하여 Runx2의 전사활성이 증가하는 것을 재확인하였다. 이러한 결과들을 토대로 CCA는 조골세포 분화를 촉진한다는 것을 알게 되었고, 골 질환 관련 제제로 CCA가 이용 가능할 수 있다고 생각된다.

ppGalNAc T1 as a Potential Novel Marker for Human Bladder Cancer

  • Ding, Ming-Xia;Wang, Hai-Feng;Wang, Jian-Song;Zhan, Hui;Zuo, Yi-Gang;Yang, De-Lin;Liu, Jing-Yu;Wang, Wei;Ke, Chang-Xing;Yan, Ru-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5653-5657
    • /
    • 2012
  • Objectives: To investigate the effect of glycopeptide-preferring polypeptide GalNAc transferase 1 (ppGalNAc T1 ) targeted RNA interference (RNAi) on the growth and migration of human bladder carcinoma EJ cells in vitro and in vivo. Methods: DNA microarray assays were performed to determine ppGalNAc Ts(ppGalNAc T1-9) expression in human bladder cancer and normal bladder tissues. We transfected the EJ bladder cancer cell line with well-designed ppGalNAc T1 siRNA. Boyden chamber and Wound healing assays were used to investigate changes of shppGalNAc T1-EJ cell migration. Proliferation of shppGalNAc T1-EJ cells in vitro was assessed using [3H]-thymidine incorporation assay and soft agar colony formation assays. Subcutaneous bladder tumors in BALB/c nude mice were induced by inoculation of shppGalNAc T1-EJ cells and after inoculation diameters of tumors were measured every 5 days to determine gross tumor volumes. Results: ppGalNAc T1 mRNA in bladder cancer tissues was 11.2-fold higher than in normal bladder tissues. When ppGalNAc T1 expression in EJ cells was knocked down through transfection by pSUPER-shppGalNAc T1 vector, markedly reduced incorporation of [3H]-thymidine into DNA of EJ cells was observed at all time points compared with the empty vector transfected control cells. However, ppGalNAc T1 knockdown did not significantly inhibited cell migration (only 12.3%). Silenced ppGalNAc T1 expression significantly inhibited subcutaneous tumor growth compared with the control groups injected with empty vector transfected control cells. At the end of observation course (40 days), the inhibitory rate of cancerous growth for ppGalNAc T1 knockdown was 52.5%. Conclusion: ppGalNAc T1 might be a potential novel marker for human bladder cancer. Although ppGalNAc T1 knockdown caused no remarkable change in cell migration, silenced expression significantly inhibited proliferation and tumor growth of the bladder cancer EJ cell line.

Description and Genomic Characteristics of Weissella fermenti sp. nov., Isolated from Kimchi

  • Jae Kyeong Lee;Ju Hye Baek;Dong Min Han;Se Hee Lee;So Young Kim;Che Ok Jeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1448-1456
    • /
    • 2023
  • A Gram-positive, non-motile, and non-spore-forming lactic acid bacterium, designated as BK2T, was isolated from kimchi, a Korean traditional fermented vegetable food, and the taxonomic characteristics of strain BK2T, along with strain LMG 11983, were analyzed. Both strains optimally grew at 30℃, pH 7.0, and 1.0% NaCl. Cells of both strains were heterofermentative and facultatively anaerobic rods, demonstrating negative reactions for catalase and oxidase. Major fatty acids (>10%) identified in both strains were C18:1 ω9c, C16:0, and summed feature 7 (comprising C19:1 ω6c and/or C19:1 ω7c). The genomic DNA G+C contents of both strains were 44.7 mol%. The 16S rRNA gene sequence similarity (99.9%), average nucleotide identity (ANI; 99.9%), and digital DNA-DNA hybridization (dDDH; 99.7%) value between strains BK2T and LMG 11983 indicated that they are different strains of the same species. Strain BK2T was most closely related to Weissella confusa JCM 1093T and Weissella cibaria LMG 17699T, with 100% and 99.4% 16S rRNA gene sequence similarities, respectively. However, based on the ANI and dDDH values (92.3% and 48.1% with W. confusa, and 78.4% and 23.5% with W. cibaria), it was evident that strain BK2T represents a distinct species separate from W. confusa and W. cibaria. Based on phylogenetic, phenotypic, and chemotaxonomic features, strains BK2T and LMG 11983 represent a novel species of the genus Weissella, for which the name Weissella fermenti sp. nov. is proposed. The type of strain is BK2T (=KACC 22833T=JCM 35750T).

Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells

  • Jung Ho Lee;Brian H Lee;Soyoung Jeong;Christine Suh-Yun Joh;Hyo Jeong Nam;Hyun Seung Choi;Henry Sserwadda;Ji Won Oh;Chung-Gyu Park;Seon-Pil Jin;Hyun Je Kim
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.18.1-18.11
    • /
    • 2023
  • Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.

흑삼의 열수 및 에탄올 추출물의 항비만 효과 (Anti-obesity Effects of Water and Ethanol Extracts of Black Ginseng)

  • 박혜진;김애정;전용필;이명숙
    • 한국식품영양과학회지
    • /
    • 제44권3호
    • /
    • pp.314-323
    • /
    • 2015
  • 본 연구는 구중구포법 과정의 흑삼 1~9포를 대상으로 열수 및 70% 에탄올 추출물의 ginsenosides을 분석한 결과 생리 활성이 높다고 판단한 흑삼 5포와 9포 열수 및 에탄올 추출물을 각각 3T3-L1 지방세포, RAW264.7 대식세포, 지방유래 줄기세포에 처치하여 세포독성, 지질축적(adipogenesis) 및 염증인자 변화를 관찰하였다. 본 연구에서는 열수 추출물보다 에탄올 추출물 흑삼에서 효율적으로 ginsenosides가 추출되었다. 또한 흑삼 에탄올 추출물이 $PPAR{\gamma}$ 및 C/$EBP{\alpha}$ 감소, AMPK의 인산화 증가 등 adipogenesis 관련인자를 억제하였으며, 아울러 염증성 사이토카인의 분비를 억제하였다. 따라서 비만 및 대사성 질환의 예방에도 잠정적으로 이용될 수 있을 것으로 기대되지만 ginsenosides와 비만과의 조절기전 연구 및 항염증성 기전 등에 대한 정확한 기전 규명이 필요하다. 현재 인삼에 함유된 ginsenosides를 이용하여 체지방 감소 등의 기능성식품으로 많이 개발되고 있는 현실을 감안해 볼 때 홍삼 및 흑삼의 제조 기술인 구증구포법의 효율적인 표준화 공정기술, 유효 생리활성 성분의 대량 생산 및 안전성 기술 등이 개발된다면 항비만에 대한 고부가 가치 상품개발이 가능할 것으로 기대된다.

RG-II from Panax ginseng C.A. Meyer suppresses asthmatic reaction

  • Jung, In-Duk;Kim, Hye-Young;Park, Jin-Wook;Lee, Chang-Min;Noh, Kyung-Tae;Kang, Hyun-Kyu;Heo, Deok-Rim;Lee, Su-Jung;Son, Kwang-Hee;Park, Hee-Ju;Shin, Sung-Jae;Park, Jong-Hwan;Ryu, Seung-Wook;Park, Yeong-Min
    • BMB Reports
    • /
    • 제45권2호
    • /
    • pp.79-84
    • /
    • 2012
  • In asthma, T helper 2 (TH2)-type cytokines such as interleukin (IL)-4, IL-5, and IL-13 are produced by activated $CD^{4+}$ T cells. Dendritic cells played an important role in determining the fate of naive T cells into either $T_H1$ or $T_H2$ cells. We determined whether RG-II regulates the $T_H1/T_H2$ immune response by using an ovalbumin-induced murine model of asthma. RG-II reduced IL-4 production but increased interferon-gamma production, and inhibited GATA-3 gene expression. RG-II also inhibited asthmatic reactions including an increase in the number of eosinophils in bronchoalveolar lavage fluid, an increase in inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyperresponsiveness. This study provides evidence that RG-II plays a critical role in ameliorating the pathogenic process of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of RG-II in terms of its effects in a murine model of asthma.

Functional characterization of naturally-occurring constitutively activating/inactivating mutations in equine follicle-stimulating hormone receptor

  • Byambaragchaa, Munkhzaya;Ahn, Tae-Young;Choi, Seung-Hee;Kang, Myung-Hwa;Min, Kwan-Sik
    • Animal Bioscience
    • /
    • 제35권3호
    • /
    • pp.399-409
    • /
    • 2022
  • Objective: Follicle-stimulating hormone (FSH) is the central hormone involved in mammalian reproduction, maturation at puberty, and gamete production that mediates its function by control of follicle growth and function. The present study investigated the mutations involved in the regulation of FSH receptor (FSHR) activation. Methods: We analyzed seven naturally-occurring mutations that were previously reported in human FSHR (hFSHR), in the context of equine FSHR (eFSHR); these include one constitutively activation variant, one allelic variant, and five inactivating variants. These mutations were introduced into wild-type eFSHR (eFSHR-wt) sequence to generate mutants that were designated as eFSHR-D566G, -A306T, -A189V, -N191I, -R572C, -A574V, and -R633H. Mutants were transfected into PathHunter EA-parental CHO-K1 cells expressing β-arrestin. The biological function of mutants was analyzed by quantitating cAMP accumulation in cells incubated with increasing concentrations of FSH. Results: Cells expressing eFSHR-D566G exhibited an 8.6-fold increase in basal cAMP response, as compared to that in eFSHR-wt. The allelic variation mutant eFSHR-A306T was not found to affect the basal cAMP response or half maximal effective concentration (EC50) levels. On the other hand, eFSHR-D566G and eFSHR-A306T displayed a 1.5- and 1.4-fold increase in the maximal response, respectively. Signal transduction was found to be completely impaired in case of the inactivating mutants eFSHR-A189V, -R572C, and -A574V. When compared with eFSHR-wt, eFSHR-N191I displayed a 5.4-fold decrease in the EC50 levels (3,910 ng/mL) and a 2.3-fold decrease in the maximal response. In contrast, cells expressing eFSHR-R633H displayed in a similar manner to that of the cells expressing the eFSHR-wt on signal transduction and maximal response. Conclusion: The activating mutant eFSHR-D566G greatly enhanced the signal transduction in response to FSH, in the absence of agonist treatment. We suggest that the state of activation of the eFSHR can modulate its basal cAMP accumulation.

Methanol extract of Elsholtzia fruticosa promotes 3T3-L1 preadipocyte differentiation

  • Deumaya Shrestha;Eunbin Kim;Krishna K. Shrestha;Sung-Suk Suh;Sung-Hak Kim;Jong Bae Seo
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.204-218
    • /
    • 2024
  • Elsholtzia fruticosa (EF) is present in tropical regions throughout South Asian countries as well as the Himalayas. Although it has been used as a traditional medicine to treat digestive, respiratory, and inflammatory issues, its effect on preadipocyte differentiation is unknown. In this study, we examined the effects of a methanol extract prepared from EF on the differentiation of 3T3-L1 preadipocytes. Cell differentiation was assessed by microscopic observation and oil-red O staining. The expression of adipogenic and lipogenic genes, including PPARγ and C/EBPα, was measured by western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), to provide insight into adipogenesis and lipogenesis mechanisms. The results indicated that EF promotes the differentiation of 3T3-L1 preadipocytes, with elevated lipid accumulation occurring in a concentration-dependent manner without apparent cytotoxicity. EF enhances the expression of adipogenic and lipogenic genes, including PPARγ, FABP4, adiponectin, and FAS, at the mRNA and protein levels. The effect of EF was more pronounced during the early and middle stages of 3T3-L1 cell differentiation. Treatment with EF decreased C/EBP homologous protein (CHOP) mRNA and protein levels, while increasing C/EBPα and PPARγ expression. Treatment with EF resulted in the upregulation of cyclin E and CDK2 gene expression within 24 h, followed by a decrease at 48 h, demonstrating the early-stage impact of EF. A concomitant increase in cyclin-D1 levels was observed compared with untreated cells, indicating that EF modulates lipogenic and adipogenic genes through intricate mechanisms involving CHOP and cell cycle pathways. In summary, EF induces the differentiation of 3T3-L1 preadipocytes by increasing the expression of adipogenic and lipogenic genes, possibly through CHOP and cell cycle-dependent mechanisms.