• Title/Summary/Keyword: C2 architecture

Search Result 1,119, Processing Time 0.037 seconds

User's Impacts on Environmental Deteriorations of Trail in Tôkyusan National Park (덕유산(德裕山) 국립공원(國立公園) 등산로(登山路)의 환경훼손(環境毁損)에 대(對)한 이용영향(利用影響))

  • Seo, Byung Soo;Kim, Sei Cheon;Park, Chong Min;Lee, Chang Heon;Lee, Kyu Wan
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.286-298
    • /
    • 1994
  • The object of this study was to examine the user's impacts on the environmental deteriorations of trail at Ticket Office - Paekryunsa (Temple) Hyangch$\hat{o}$kpong - Dongyupryung - Chilyun Fall area in T$\hat{o}$kyusan National Park. Four trails were sampled in the study area according to the amount of users. Then the user's impacts on trail were measured at each trail. The Ticket Office-Paekryunsa trail was the most used district and followed at Paekryunsa-Hyangch$\hat{o}$kpong trail, Hyangch$\hat{o}$kpong-Dongyupryung trail in descending order. Dongyupryung-Chilyun Fall trail is not used by people because of rest rotation system. The entire width of trail was greater at the more heavily used trail. Maximum depth, cross-sectional area loss, and surface texture and roughness of trail were the highest at Paekryunsa-Hyangch$\hat{o}$kpong trail. Soil hardness, soil acidity, soil moisture content, organic matter content, and exchange canon were influenced by trampling. Soil hardness, soil acidity and exchange canon increased in tramples soil, but content of soil moisture and organic matter decreased therein. Environmental deteriorations of trail were significantly influenced by the amount of users and the slope of trail. Bared lands about $2.000m^2$ were appeared by trampling and camping around Hyangch$\hat{o}$kpong. Effects of carrying of rest rotation system for National Park were partly recognized at Dongyupryung-Chilyun Fall trail.

  • PDF

Morphological characteristics of the upper airway and pressure drop analysis using 3D CFD in OSA patients (폐쇄성 수면무호흡 환자의 상기도 형태의 특징과 압력강하에 관한 3차원 전산유체역학해석)

  • Mo, Sung-Seo;Ahn, Hyung-Taek;Lee, Jeong-Seon;Chung, Yoo-Sam;Moon, Yoon-Shik;Pae, Eung-Kwon;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.40 no.2
    • /
    • pp.66-76
    • /
    • 2010
  • Objective: Obstructive sleep apnea (OSA) is a common disorder which is characterized by a recurrence of entire or partial collapse of the pharyngeal airway during sleep. A given tidal volume must traverse the soft tissue tube structure of the upper airway, so the tendency for airway obstruction is influenced by the geometries of the duct and characteristics of the airflow in respect to fluid dynamics. Methods: Individualized 3D FEA models were reconstructed from pretreatment computerized tomogram images of three patients with obstructive sleep apnea. 3D computational fluid dynamics analysis was used to observe the effect of airway geometry on the flow velocity, negative pressure and pressure drop in the upper airway at an inspiration flow rate of 170, 200, and 230 ml/s per nostril. Results: In all 3 models, large airflow velocity and negative pressure were observed around the section of minimum area (SMA), the region which narrows around the velopharynx and oropharynx. The bigger the Out-A (outlet area)/ SMA-A (SMA area) ratio, the greater was the change in airflow velocity and negative pressure. Conclusions: Pressure drop meaning the difference between highest pressure at nostril and lowest pressure at SMA, is a good indicator for upper airway resistance which increased more as the airflow volume was increased.

The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성)

  • Park, Young-Shin;Kang, Min-Gi;Kim, Jung-Ho;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The part of a building with the biggest energy loss is the exterior and many studies are actively conducted to reduce the energy loss on that part. However, most studies consider the window frames and insulation materials, but many studies do not discuss the concrete that takes more than 70% of the exterior. In order to minimize the energy loss of buildings, it is necessary to enhance the concrete's insulation performance and studies need to be conducted on this. Therefore, this study used a micro foam cell admixture, calcined diatomite powder, and lightweight aggregates as a part of a study to develop a type of concrete with improved insulation performance that has twice higher thermal conductivity compared to concrete. It particularly secured the porosity inside concrete to lower thermal conductivity. As a result of the experiment, the slump and air capacity showed fair results, but all mixtures containing micro foaming agent showed 14.3~35.1% lower mass per unit of volume compared to regular concrete. Compressive strength decreased slightly due to the materials used to improve the insulating performance, but it all satisfied this study's target strength(24MPa). Thermal conductivity was up to twice higher than that of regular concrete.

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.

Design of a Small Area 12-bit 300MSPS CMOS D/A Converter for Display Systems (디스플레이 시스템을 위한 소면적 12-bit 300MSPS CMOS D/A 변환기의 설계)

  • Shin, Seung-Chul;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a small area 12-bit 300MSPS CMOS Digital-to-Analog Converter(DAC) is proposed for display systems. The architecture of the DAC is based on a current steering 6+6 segmented type, which reduces non-linearity error and other secondary effects. In order to improve the linearity and glitch noise, an analog current cell using monitoring bias circuit is designed. For the purpose of reducing chip area and power dissipation, furthermore, a noble self-clocked switching logic is proposed. To verify the performance, it is fabricated with $0.13{\mu}m$ thick-gate 1-poly 6-metal N-well Samsung CMOS technology. The effective chip area is $0.26mm^2$ ($510{\mu}m{\times}510{\mu}m$) with 100mW power consumption. The measured INL (Integrated Non Linearity) and DNL (Differential Non Linearity) are within ${\pm}3LSB$ and ${\pm}1LSB$, respectively. The measured SFDR is about 70dB, when the input frequency is 15MHz at 300MHz clock frequency.

Increased Expression of TGF-β1 in Correlation with Liver Fibrosis during Echinococcus granulosus Infection in Mice

  • Liu, Yumei;Abudounnasier, Gulizhaer;Zhang, Taochun;Liu, Xuelei;Wang, Qian;Yan, Yi;Ding, Jianbing;Wen, Hao;Yimiti, Delixiati;Ma, Xiumin
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.4
    • /
    • pp.519-525
    • /
    • 2016
  • To investigate the potential role of transforming growth factor (TGF)-${\beta}1$ in liver fibrosis during Echinococcus granulosus infection, 96 BALB/c mice were randomly divided into 2 groups, experimental group infected by intraperitoneal injection with a metacestode suspension and control group given sterile physiological saline. The liver and blood samples were collected at days 2, 8, 30, 90, 180, and 270 post infection (PI), and the expression of TGF-${\beta}1$ mRNA and protein was determined by real-time quantitative RT-PCR and ELISA, respectively. We also evaluated the pathological changes in the liver during the infection using hematoxylin and eosin (H-E) and Masson staining of the liver sections. Pathological analysis of H-E stained infected liver sections revealed liver cell edema, bile duct proliferation, and structural damages of the liver as evidenced by not clearly visible lobular architecture of the infected liver, degeneration of liver cell vacuoles, and infiltration of lymphocytes at late stages of infection. The liver tissue sections from control mice remained normal. Masson staining showed worsening of liver fibrosis at the end stages of the infection. The levels of TGF-${\beta}1$ did not show significant changes at the early stages of infection, but there were significant increases in the levels of TGF-${\beta}1$ at the middle and late stages of infection (P<0.05). RT-PCR results showed that, when compared with the control group, TGF-${\beta}1$ mRNA was low and comparable with that in control mice at the early stages of infection, and that it was significantly increased at day 30 PI and remained at high levels until day 270 PI (P<0.05). The results of this study suggested that increased expression of TGF-${\beta}1$ during E. granulosus infection may play a significant role in liver fibrosis associated with E. granulosus infection.

Flexural Behavior and Design of Concrete-filled U-shape Hybrid Composite Beams Fabricated from 570MPa High-strength Steel (570MPa급 고강도강을 적용한 콘크리트 채움 U형 하이브리드 합성보의 휨거동 및 설계)

  • Lee, Cheol Ho;So, Hyun Joon;Park, Chang Hee;Lee, Chang Nam;Lee, Seung Hwan;Oh, Ha Nool
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.109-120
    • /
    • 2016
  • Flexural tests of full-scale concrete-filled U-shape hybrid composite beams were conducted. Ordinary (SS400) and high-strength (SM570) steel plates were used in the web and in the bottom flange of U-shape steel section respectively. The primary objectives were to develop the hybrid section configuration with maximized flexural capacity and to investigate its flexural strength and deformation capacity. All the hybrid test specimens in this study exhibited the plastic moment capacity and resonable deformability. It is shown that the plastic stress distribution can be assumed in calculating the flexural strength of the proposed hybrid composite beams if the plastic neural axis is located within 15% of the total beam depth from the top of the composite slab. The procedure for computing the effective flexural stiffness of hybrid composite beams is also recommended based on test results.

Vegetation Structure of Warm Temperate Evergreen Forest at Ch'omch'alsan, Chimdo, Korea (진도 첨찰산 상록활엽수림의 식생구조)

  • Oh, Koo-Kyoon;Cho, Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.10 no.1
    • /
    • pp.66-75
    • /
    • 1996
  • To propose basic information for national resource management and planting disign, plant community structure of evergreen broad-leaved forest was investigated. Fifty-two plots(each size 300m$^{2}$) were set up at Ch'omch'alsan area of Chindo, Korea. TWINSPAN and DCA methods were used for classification and ordination analysis. Fifty-two plots were divided into seven groups, which were Quercus variabilis-Carpinus tschonoskii community, Q. glauca community, Castanepsis cuspidata var. sieboldii-Q. stenophylla community, Castanopsis cuspidata var. sieboldii-Camelia japonica community, Q. acuta-Camelia japonica community, Carpinus coreaca-Q spp. community, C. coreana community. Pinus densiflora almost have been selected. Carpinus tschomoskii, Q. variabillis and Q. serrata were to be succeeded by Castanea cuspidata var. sieboldii, Q. stenophylla, Q. acuta and Neolitsea sericea in canopy layer. And Neolitsea sericea, Q. glauca and Camellia japonica was showed high importance values in fertile soil condition. Future restoration plan was necessary for a tourist resort or national forest in warm temperate region. And evergreen broad-leaved plants shall be planted in considering of environmental condition at warm temperate and industrial complex area.

  • PDF

The Relation between Pullout Load and Compressive Strength of Ultra-High-Strength Concrete (초고강도 콘크리트의 인발하중과 압축강도와의 관계)

  • Ko, Hune-Beom;Kim, Ki-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The pullout test, a nondestructive testing(NDT), for pre-installed inserts is perhaps the most widely used technique to estimate the in-situ compressive strength of concrete. It measures the force needed to pullout a standardized metal insert embedded into concrete members. The pullout test was certified by the American Society for Testing and Materials(ASTM) and Canadian Standards Association(CSA) as a reliable method for determining the strength of concrete in concrete structures under construction. To easily estimate the strength of ultra-high-strength concrete, a simplified pullout tester, primarily composed of a standard 12mm bolt with a groove on the shaft as a break-off bolt, an insert nut, and a hydraulic oil pump without a load cell, was proposed. Four wall and two slab specimens were tested for two levels of concrete strength, 80MPa and 100MPa, using a simplified pullout tester with a load cell to verify the advantages of the pullout test and simplified pullout test. The compressive strength of concrete, pullout load, and the rupture of the break-off bolt were measured 11 times, day 1 to 7, 14, 21, 28, and 90. The correlation of the pullout load and the compressive strength of each specimen show a higher degree of reliability. Therefore, a simplified pullout test can be used to evaluate the in-place strength of ultra-high-strength concrete in structures. The prediction equation for the groove diameter of the break-off bolt(y) with the concrete strength(x) was proposed as y=0.0184x+5.4. The results described in this research confirm the simplified pullout's utility and potential for low cost, simplicity, and convenience.

Discovery of a Novel Cellobiose Dehydrogenase from Cellulomonas palmilytica EW123 and Its Sugar Acids Production

  • Ake-kavitch Siriatcharanon;Sawannee Sutheeworapong;Sirilak Baramee;Rattiya Waeonukul;Patthra Pason;Akihiko Kosugi;Ayaka Uke;Khanok Ratanakhanokchai;Chakrit Tachaapaikoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.457-466
    • /
    • 2024
  • Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium Cellulomonas palmilytica EW123 (CpCDH) was cloned and characterized. The CpCDH exhibited a domain architecture resembling class-I CDH found in Basidiomycota. The cytochrome c and flavin-containing dehydrogenase domains in CpCDH showed an extra-long evolutionary distance compared to fungal CDH. The amino acid sequence of CpCDH revealed conservative catalytic amino acids and a distinct flavin adenine dinucleotide region specific to CDH, setting it apart from closely related sequences. The physicochemical properties of CpCDH displayed optimal pH conditions similar to those of CDHs but differed in terms of optimal temperature. The CpCDH displayed excellent enzymatic activity at low temperatures (below 30℃), unlike other CDHs. Moreover, CpCDH showed the highest substrate specificity for disaccharides such as cellobiose and lactose, which contain a glucose molecule at the non-reducing end. The catalytic efficiency of CpCDH for cellobiose and lactose were 2.05 × 105 and 9.06 × 104 (M-1 s-1), respectively. The result from the Fourier-transform infrared spectroscopy (FT-IR) spectra confirmed the presence of cellobionic and lactobionic acids as the oxidative products of CpCDH. This study establishes CpCDH as a novel and attractive bacterial CDH, representing the first report of its kind in the Cellulomonas genus.