• Title/Summary/Keyword: C2+ products

Search Result 4,241, Processing Time 0.036 seconds

Feasibility of near-infrared spectroscopic observation for traditional fermented soybean production (전통 메주 제조과정에 있어서 근적외 모니터링 가능성 조사)

  • Jeon, Jae Hwan;Lee, Seon Mi;Cho, Rae Kwang
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.145-152
    • /
    • 2017
  • In this study, near infrared (NIR) spectroscopy known as a non-destructive analysis technique was applied to investigate peptide cleavage and consequent release of amino acids in soybean lumps as affected by its moisture content and incubation time during fermentation at 25 for 3 weeks. The NIR spectra of the soybean lump semi-dried and soaked in saline water showed that absorption intensity around 1,400 nm originating from hydrogen bonds of water decreased and absorption band shifted to 1,430 nm as moisture content decreased during incubation at 25 for 3 weeks. In addition, absorption around 2,050 nm which was assigned to amino groups increased as incubation time increased. NIR spectra data from 1,000 to 2,250 nm showed higher accuracy in the discriminant analysis between outside and inside parts of fermented soybean lumps than visible spectra result. NIR spectroscopy for the amino acid and moisture contents in traditional fermented soybean lumps showed relatively good accuracy with the multiple correlation coefficient ($R^2$) of 0.91 and 0.81, respectively, and root mean square error of cross validation (RMSECv) of 0.23 and 0.83%, respectively, in partial least square regression (PLSR). These results indicate that NIR spectral observations could be applicable to control the fermentation process for preparation of soybean products.

A STUDY ON THE BOND OF AESTHETIC RESTORATIVE MATERIALS TO FLUORIDE TREATED ROOT DENTIN (불소처리된 치근상아질에 대한 심미수복재의 결합에 관한 연구)

  • Tak, Heung-Soo;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Ki-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.197-212
    • /
    • 1998
  • The purpose of this study was to evaluate the effects of fluoride application on the aspect of shear bond strength of three aesthetic restorative materials to dentin. One light-cured composite resin(Palfique Esterite) and two light-cured glass ionomer cements(Fuji II LC and Compoglass)were used in this study. 120 permanent molars were used for this study. The teeth were extracted due to the origin of periodontal disease. The crowns of all teeth were removed, and the remaining roots were embedded in epoxy resin. The mesial or distal surfaces of roots were ground flat to expose dentin and polished on wet 320-, 400-, and 600 grit SIC papers for a total of 120 prepared flat root dentin surfaces. The prepared samples were divided into six groups. Group 1, 3, and 5 were control groups and group 2, 4, and 6 were experimental groups. Sixty samples for experimental groups were treated with 2% NaF solution for 5 minutes. Group 1 and 2 were bonded with Plafique Esterite, group 3 and 4 were bonded with Fuji II LC, and group 5 and 6 were bonded with Compoglass. After 24 hours water storage at $37{\pm}1^{\circ}C$, all samples were subjected to a shear to fracture with Instron universal testing machine(No.4467) at 1.0 mm/min displacement rate. Dentin surfaces treated with each conditioners before bonding and interfacial layers between dentin and aesthetic restorative materials were observed under Scanning Electron Microscope(Hitachi S-2300) at 20Kvp. The data were evaluated statistically at the 95% confidence level with ANOVA test. The result were as follows; 1. Among the control groups, group 1 showed strongest bond strength and group 3 showed weakest. 2. Among the experimental groups, group 2 showed strongest bond strength and group 6 showed weakest. 3. Statistical analysis of the data showed that pretreatment of dentin with 2% NaF solution significantly decreased the bond strength of three aesthetic restorative materials to dentin(P<0.05). 4. SEM findings of fluoride treated dentin surfaces (2, 4, 6 group) demonstrated dentin surfaces covered with fluoridated reaction products. 5. Except group 4 and 6, resin tags were formed in all groups.

  • PDF

Development of a Predictive Model Describing the Growth of Staphylococcus aureus in Pyeonyuk marketed (시중 유통판매 중인 편육에서의 Staphylococcus aureus 성장예측모델 개발)

  • Kim, An-Na;Cho, Joon-Il;Son, Na-Ry;Choi, Won-Seok;Yoon, Sang-Hyun;Suh, Soo-Hwan;Kwak, Hyo-Sun;Joo, In-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.206-210
    • /
    • 2017
  • This study was performed to develope mathematical models for predicting growth kinetics of Staphylococcus aureus in the processed meat product, pyeonyuk. Growth patterns of S. aureus in pyeonyuk were determined at the storage temperatures of 4, 10, 20, and $37^{\circ}C$ respectively. The number of S. aureus in pyeonyuk increased at all the storage temperatures. The maximum specific growth rate (${\mu}_{max}$) and lag phase duration (LPD) values were calculated by Baranyi model. The ${\mu}_{max}$ values went up, while the LPD values decreased as the storage temperature increased from $4^{\circ}C$ to $37^{\circ}C$. Square root model and polynomial model were used to develop the secondary models for ${\mu}_{max}$ and LPD, respectively. Root Mean Square Error (RMSE) was used to evaluate the developed model and the fitness was determind to be 0.42. Therefore the developed predictive model was useful to predict the growth of S. aureus in pyeonyuk and it will help to prevent food-born disease by expanding for microbial sanitary management guide.

Antecedents of Manufacturer's Private Label Program Engagement : A Focus on Strategic Market Management Perspective (제조업체 Private Labels 도입의 선행요인 : 전략적 시장관리 관점을 중심으로)

  • Lim, Chae-Un;Yi, Ho-Taek
    • Journal of Distribution Research
    • /
    • v.17 no.1
    • /
    • pp.65-86
    • /
    • 2012
  • The $20^{th}$ century was the era of manufacturer brands which built higher brand equity for consumers. Consumers moved from generic products of inconsistent quality produced by local factories in the $19^{th}$ century to branded products from global manufacturers and manufacturer brands reached consumers through distributors and retailers. Retailers were relatively small compared to their largest suppliers. However, sometime in the 1970s, things began to slowly change as retailers started to develop their own national chains and began international expansion, and consolidation of the retail industry from mom-and-pop stores to global players was well under way (Kumar and Steenkamp 2007, p.2) In South Korea, since the middle of the 1990s, the bulking up of retailers that started then has changed the balance of power between manufacturers and retailers. Retailer private labels, generally referred to as own labels, store brands, distributors own private-label, home brand or own label brand have also been performing strongly in every single local market (Bushman 1993; De Wulf et al. 2005). Private labels now account for one out of every five items sold every day in U.S. supermarkets, drug chains, and mass merchandisers (Kumar and Steenkamp 2007), and the market share in Western Europe is even larger (Euromonitor 2007). In the UK, grocery market share of private labels grew from 39% of sales in 2008 to 41% in 2010 (Marian 2010). Planet Retail (2007, p.1) recently concluded that "[PLs] are set for accelerated growth, with the majority of the world's leading grocers increasing their own label penetration." Private labels have gained wide attention both in the academic literature and popular business press and there is a glowing academic research to the perspective of manufacturers and retailers. Empirical research on private labels has mainly studies the factors explaining private labels market shares across product categories and/or retail chains (Dahr and Hoch 1997; Hoch and Banerji, 1993), factors influencing the private labels proneness of consumers (Baltas and Doyle 1998; Burton et al. 1998; Richardson et al. 1996) and factors how to react brand manufacturers towards PLs (Dunne and Narasimhan 1999; Hoch 1996; Quelch and Harding 1996; Verhoef et al. 2000). Nevertheless, empirical research on factors influencing the production in terms of a manufacturer-retailer is rather anecdotal than theory-based. The objective of this paper is to bridge the gap in these two types of research and explore the factors which influence on manufacturer's private label production based on two competing theories: S-C-P (Structure - Conduct - Performance) paradigm and resource-based theory. In order to do so, the authors used in-depth interview with marketing managers, reviewed retail press and research and presents the conceptual framework that integrates the major determinants of private labels production. From a manufacturer's perspective, supplying private labels often starts on a strategic basis. When a manufacturer engages in private labels, the manufacturer does not have to spend on advertising, retailer promotions or maintain a dedicated sales force. Moreover, if a manufacturer has weak marketing capabilities, the manufacturer can make use of retailer's marketing capability to produce private labels and lessen its marketing cost and increases its profit margin. Figure 1. is the theoretical framework based on a strategic market management perspective, integrated concept of both S-C-P paradigm and resource-based theory. The model includes one mediate variable, marketing capabilities, and the other moderate variable, competitive intensity. Manufacturer's national brand reputation, firm's marketing investment, and product portfolio, which are hypothesized to positively affected manufacturer's marketing capabilities. Then, marketing capabilities has negatively effected on private label production. Moderating effects of competitive intensity are hypothesized on the relationship between marketing capabilities and private label production. To verify the proposed research model and hypotheses, data were collected from 192 manufacturers (212 responses) who are producing private labels in South Korea. Cronbach's alpha test, explanatory / comfirmatory factor analysis, and correlation analysis were employed to validate hypotheses. The following results were drawing using structural equation modeling and all hypotheses are supported. Findings indicate that manufacturer's private label production is strongly related to its marketing capabilities. Consumer marketing capabilities, in turn, is directly connected with the 3 strategic factors (e.g., marketing investment, manufacturer's national brand reputation, and product portfolio). It is moderated by competitive intensity between marketing capabilities and private label production. In conclusion, this research may be the first study to investigate the reasons manufacturers engage in private labels based on two competing theoretic views, S-C-P paradigm and resource-based theory. The private label phenomenon has received growing attention by marketing scholars. In many industries, private labels represent formidable competition to manufacturer brands and manufacturers have a dilemma with selling to as well as competing with their retailers. The current study suggests key factors when manufacturers consider engaging in private label production.

  • PDF

Development of Analytical Method for Ergot Alkaloids in Foods Using Liquid Chromatoraphy-Tandem Mass Spectrometry (LC-MS/MS를 이용한 식품 중 맥각 알칼로이드 시험법 개발)

  • Chun, So Young;Chong, Euna;Lee, Bomnae;Kwon, Jin-Wook;Park, Hye Young;Kim, Sheenhee;Gang, Giljin
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.158-169
    • /
    • 2019
  • Ergot alkaloids are mycotoxin produced by fungi of the Claviceps genus, mainly by Claviceps purpurea in EU. Recently obtained informations indicates necessity for control the ergot in imported grains. Recent occurrence data of ergot alkaloids from EU countries indicate the necessities of management and control these toxins from the imported grains like rye, wheat, oat etc. The aim of this study is to optimize the liquid chromatography-tandem mass spectrometry method for determination of ergot alkaloids (ergometrine, ergosine, ergotamine, ergocornine, ergocryptine, ergocristine and their epimers (-inines) from grain and grain-based food. The test method was optimized by extracting the sample with acetonitrile containing 2 mM ammonium carbonate, purification with Mycosep cartridge, and instrumental analysis by LC-MS/MS using Syncronis C18 column. The standard calibration curves showed linearity with correlation coefficents; $R^2$ >0.99. Mean recoveries ranged from 72.0 to 111.3% at three different fortified levels (20, 50, and $100{\mu}g/kg$). The correlation coefficient expressed as precision was within the range of 1.9-12.9%. The limit or quantifications (LOQ) ranged from 0.012 to $0.058{\mu}g/kg$. The developed analytical method met the criteria of AOAC Int. and CAC validation parameters like accuracy and sensitivity. As a result, it was confirmed that the test method developed in this study is suitable for the simultaneous analysis of six species of ergot alkaloid from grains and grain products.

Fenton-like Reaction for Treatment of Petroleum-Contaminated Silty Clay after Soil Washing Process (토양세척 후의 유류 오염 Silty Clay 처리를 위한 유사펜톤 산화반응)

  • So, Myung-Ho;Ha, Ji-Yeon;Yu, Jae-Bong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This research was performed to assess a Fenton-like oxidation using naturally present iron in the field to treat remained oils throughout silty clay residues which finally resided even after a series of soil washing process. Biodegradability was thus tested for reaction products to investigate a possible treatment of the Fenton-like oxidation coupled with a biological treatment process. For those purposes, two types of field soil samples (e.g., dewatered cake after conditioning with a polymer and not-dewatered residue) were tested to remove TPH by adding the various concentration of hydrogen peroxide ($H_2O_2$). Moreover the biodegradability of treated samples was observed based on the ratio of $BOD_5/COD_{Cr}$ after Fenton-like oxidation. The Highest removal of TPH was at 1% of hydrogen peroxide ($H_2O_2$) when hydrogen peroxide ($H_2O_2$) was continuously injected for a period of time rather than that of spot introduction with the same amount of it. For the dewatered cake, TPH was effectively treated when the ratio of solid and water was mixed at 1 : 2. Employing cooking oil could increase solubility of TPH due to enhanced surface-active escalating TPH desorption from silty clay. Nonetheless, the biodegradability was decreased as long as the oxidation duration being extended regardless of operational conditions. It was therefore proved that Fenton-like oxidation using $H_2O_2$ and natural iron minerals was able to remove adsorbed oils in silty clay but the removal efficiency of TPH was low. And if a biological treatment process followed after Fenton-like oxidation, microorganisms would need enough time for acclimation.

Development of Cereal Product Containing γ-Aminobutyric Acid Producing Lactic Acid Bacteria Using Electrostatic Spray Technology (Electrostatic Spray 기술을 이용한 GABA 생성 유산균 함유 곡류 제품 개발)

  • Jeong, Ji-Hee;An, Do-Kyun;Kim, Dong-Kyun;Kim, Kwang-Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.8
    • /
    • pp.979-985
    • /
    • 2017
  • This study was carried out to investigate the production of ${\gamma}$-aminobutyric acid (GABA) by lactic acid bacteria and to manufacture GABA using rice bran extract-based optimum medium. Electrostatic spraying technology was used to add GABA into the cereals. The isolated Lactobacillus brevis CFM11 produced the highest GABA production up to a concentration of $2,002.93{\mu}g/mL$ when cultivated in MRS broth containing 0.8% monosodium glutamate (MSG). The production level of GABA was $585.80{\mu}g/mL$ in rice bran extract containing 0.4% MSG, 2% sucrose, 1% skim milk, and 0.2% magnesium sulfate. After electrostatic spraying of the cultured suspension onto rice, GABA concentration reached $228.10{\mu}g/g$ while untreated rice reached $32.23{\mu}g/g$. These results demonstrate that rice bran extract can be an economic commercial medium for GABA production as a substitute for MRS broth. This study demonstrates the novel application of electrostatic spraying of GABA into cereal products for the first time.

Study on Hydration Heat of Blended Belite Binder (벨라이트계 혼합 결합재의 수화열 특성에 관한 연구)

  • Lee, Kewn-Chu;Cho, Jae-Woo;Jung, Sang-Hwa;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • Presently, mass concrete structures are being built in federal and private projects of civil infrastructures and building structures. The hydration heat of mass concrete structures is the most important factor in the quality of concrete matrix and construction period. Moreover, internal cracks caused by hydration heat degrades durability, water tightness, and strength of concrete. To reduce hydration heat, it is necessary to blend belite cement (${\beta}-C_2S$) with industrial by-products (i.e. granulated slag and fly ash). In this experiment, 14 levels of binary binders and 4 levels of ternary binders were used to understand the effect of different replacement ratio on hydration heat, strength and microstructure (i.e. SEM and XRD) of mortar. Cumulative hydration heat at 28 days for the binary and ternary binders was affected by replacement ratio of fly ash and/or granulated slag. As fly ash content increased, hydration heat decreased. As granulated slag content increased, reduction rate of the hydration heat was lower than when fly ash was used. Especially, the hydration heat of ternary binder blended with 40% flyash and 30% granulated slag showed about 50% of hydration heat from using belite cement (P). The study results showed that the temperature rise of concrete matrix can be decreased by using blended belite binders producing low hydration heat and reasonable strength.

Experimental Studies on Shear Strength of High-Strength Lightweight Concrete Beam using the Industrial by-products (산업부산물을 활용한 고강도 경량콘크리트 보의 전단강도에 대한실험 연구)

  • Lee, Seung-Jo;Park, Jung-Min;Kim, Wha-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.621-630
    • /
    • 2006
  • Twelve beams made of lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. A total of 12 beams without(4 beams) and with lightweight(8 beams) were tested in a stiff testing facility, and complete load-midspan deflection curves, including the maximum capacities portion, were obtained. The variables in the test program were concrete strength, which varied 35.4 MPa, 65.3 MPa; shear span-depth ratios a/d=1.5, 2.5, 3.5, 4.5; and tensile steel ratio between 0.57 and 2.3 percent. Also, we divided beam by diagonal tension crack and ultimate shearing strength to propose an equation. In addition, it analyzed comparison mutually applying existing proposal and guide. $V_{cr}$ was as result that AIK recommendations and Zsutty proposal decrease more than a/d=2.5, increased some in Mathey's proposal equation. $V_{cr,\exp}/V_{cr,cal}$ showed tendency of overestimation according to increase of tensile steel ratio and compressive strength of concrete. On the other hand, $V_{cr,\exp}/V_{cr,cal}$ is superior in conformability with an experiment result Zsutty's proposal among other equations. The proposal equation hew that expect $V_{cr}/V_u$, rationally about shearing strength. Therefore, shear strength an equation is considered to be utilized usefully evaluating capacity by change of the shear span depth ratio of lightweight concrete, tensile steel ratio, and compressive strength of the concrete in this research.

Plasma Etching Characteristics of Sapphire Substrate using $BCl_3$-based Inductively Coupled Plasma ($BCl_3$ 계열 유도결합 플라즈마를 이용한 사파이어 기판의 식각 특성)

  • Kim, Dong-Pyo;Woo, Jong-Chang;Um, Doo-Seng;Yang, Xue;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.363-363
    • /
    • 2008
  • The development of dry etching process for sapphire wafer with plasma has been key issues for the opto-electric devices. The challenges are increasing control and obtaining low plasma induced-damage because an unwanted scattering of radiation is caused by the spatial disorder of pattern and variation of surface roughness. The plasma-induced damages during plasma etching process can be classified as impurity contamination of residual etch products or bonding disruption in lattice due to charged particle bombardment. Therefor, fine pattern technology with low damaged etching process and high etch rate are urgently needed. Until now, there are a lot of reports on the etching of sapphire wafer with using $Cl_2$/Ar, $BCl_3$/Ar, HBr/Ar and so on [1]. However, the etch behavior of sapphire wafer have investigated with variation of only one parameter while other parameters are fixed. In this study, we investigated the effect of pressure and other parameters on the etch rate and the selectivity. We selected $BCl_3$ as an etch ant because $BCl_3$ plasmas are widely used in etching process of oxide materials. In plasma, the $BCl_3$ molecule can be dissociated into B radical, $B^+$ ion, Cl radical and $Cl^+$ ion. However, the $BCl_3$ molecule can be dissociated into B radical or $B^+$ ion easier than Cl radical or $Cl^+$ ion. First, we evaluated the etch behaviors of sapphire wafer in $BCl_3$/additive gases (Ar, $N_2,Cl_2$) gases. The behavior of etch rate of sapphire substrate was monitored as a function of additive gas ratio to $BCl_3$ based plasma, total flow rate, r.f. power, d.c. bias under different pressures of 5 mTorr, 10 mTorr, 20 mTorr and 30 mTorr. The etch rates of sapphire wafer, $SiO_2$ and PR were measured with using alpha step surface profiler. In order to understand the changes of radicals, volume density of Cl, B radical and BCl molecule were investigated with optical emission spectroscopy (OES). The chemical states of $Al_2O_3$ thin films were studied with energy dispersive X-ray (EDX) and depth profile anlysis of auger electron spectroscopy (AES). The enhancement of sapphire substrate can be explained by the reactive ion etching mechanism with the competition of the formation of volatile $AlCl_3$, $Al_2Cl_6$ or $BOCl_3$ and the sputter effect by energetic ions.

  • PDF