• Title/Summary/Keyword: C18 modification

Search Result 106, Processing Time 0.025 seconds

Adsorption and Storage of Hydrogen by Nanoporous Adsorbents (나노세공체 흡착제에 의한 수소 흡착 및 저장)

  • Jhung, Sung Hwa;Chang, Jong-San
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.99-110
    • /
    • 2007
  • Efficient and inexpensive hydrogen storage is an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources for $21^{st}$ century. In this review, several storage techniques are briefly reviewed and compared. Especially, adsorption/storage via physisorption at low temperature, by using nanoporous adsorbents, is reviewed and evaluated for further developments. The adsorption over a porous material at low temperature is currently investigated deeply to fulfill the storage target. In this review, several characteristics needed for the high hydrogen adsorption capacity are introduced. It may be summarized that following characteristics are necessary for high storage capacity over porous materials: i) high surface area and micropore volume, ii) narrow pore size, iii) strong electrostatic field, and iv) coordinatively unsaturated sites, etc. Moreover, typical results demonstrating high storage capacity over nanoporous materials are summarized. Storage capacity up to 7.5 wt% at liquid nitrogen temperature and 80 atm is reported. Competitive adsorbents that are suitable for hydrogen storage may be developed via intensive and continuous studies on design, synthesis, manufacturing and modification of nanoporous materials.

Isolation and Genetic Transformation of Primordial Germ Cell (PGC)-Derived Cells from Cattle, Goats, Rabbits and Rats

  • Lee, C.K.;Moore, K.;Scales, N.;Westhusin, M.;Newton, G.;Im, K.S.;Piedrahita, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.587-594
    • /
    • 2000
  • At present embryonic stem (ES) cells with confirmed pluripotential properties are only available in the mouse. Recently, we were able to isolate, culture and genetically transform primordial germ cell (PGC)-derived cells from pig embryos and demonstrate their ability to contribute to chimera development in the pig. In order to determine whether the system we developed could be used to isolate embryonic germ (EG) cells from other mammalian species, we placed isolated PGCs from cattle, goats, rabbits and rats in culture. Briefly, PGCs were isolated from fetuses of cow (day 30-50), goat (day 25), rabbit (day 15-18) and rat (day 11-12), and plated on STO feeder cells in Dulbecco's modified Eagle's medium (DMEM): Ham's F10 medium (1:1) supplemented with 0.01 mM nonessential amino acids, 2 mM L-glutamine, 0.1 mM $\beta$ - mercaptoethnol, soluble recombinant human stem cell factor (SCF; 40ng/ml), human basic fibroblast growth factor (bFGF; 20ng/ml) and human leukemia inhibitory factor (LIF; 20ng/ml). For maintenance of the cells, colonies were passed to fresh feeders every 7-10 days. In all species tested, we were able to obtain and maintain colonies with ES-like morphology. Their developmental potential was tested by alkaline phosphatase (AP) staining and in vitro differentiation assay. For genetic transformation, cells were electroporated with a construct containing the green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) promoter. GFP-expressing colonies were detected in cattle, rabbits and rats. These results suggest that PGC-derived cells from cattle, goats, rabbits and rats can be isolated, cultured, and genetically transformed, and provide the basis for analyzing their developmental potential and their possible use for the precise genetic modification of these species.

Modification of Microclimate to Improve Milk Production in Tropical Rainforest of Thailand

  • Suriyasathaporn, W.;Boonyayatra, S.;Kreausukon, K.;Pinyopummintr, T.;Heuer, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.811-815
    • /
    • 2006
  • The objective of this study was to evaluate the effect of electric fan installation for milk production improvement of dairy cattle in Thailand. The study was conducted using 2 small-holder dairy farms in Chiang Mai province, during April to August 2004. Electric fans were installed in front of each row of cows. Each of the two rows of cows in the barn was defined as an experimental unit, thus each farm had two experimental units. The fans were operated alternately in 7-day intervals between rows of cows within each farm during the day or between 8.00 am to 8.00 pm. Non-operation periods were used as control. Milk yields were recorded. Data on environmental temperature and humidity were obtained from Chiang Mai Meteorological Center. Result from statistically analysis of milk record suggested an interaction between lactation period and fan installation. Therefore, this interaction term of lactation period and fan installation (PERIOD_FAN) was added as a variable to the regression model. Due to the repeated data collection of milk yield from the same cow (alternate week), milk yield was analyzed by repeated measure analysis (Mixed model). Least square means were calculated for all levels and used to compare between each pair-wise values. The final data were collected from the total of 18 cows with 2,072 data. Overall means and SEM of milk yields and days in milk separated into farm were $14.7{\pm}0.06kg/day$ and $176.3{\pm}2.2days$, and $15.2{\pm}0.22kg/day$ and $202.5{\pm}3.7$ days for farm A and farm B, respectively. For multivariable analysis, only PERIOD_FAN and humidity were significantly associated with milk yield. Only the first period of lactation showed that the amount of milk yields during fan installation was higher than that of non-fan installation (p<0.05). Cows with fan installation produced approximately 1.2 kg/cow more milk than cows without fan installation during this period. In conclusion, the use of electric fan operated during the day time increased milk production of cows during the first period of lactation.

Understanding the protox inhibition activity of novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives using comparative molecular field analysis (CoMFA) methodology (비교 분자장 분석 (CoMFA) 방법에 따른 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluoro-benzene 유도체들의 Protox 저해 활성에 관한 이해)

  • Sung, Nack-Do;Song, Jong-Hwan;Yang, Sook-Young;Park, Kyeng-Yong
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.3
    • /
    • pp.151-161
    • /
    • 2004
  • Three dimensional quantitative structure-activity relationships (3D-QSAR) studies for the protox inhibition activities against root and shoot of rice plant (Orysa sativa L.) and barnyardgrass (Echinochloa crus-galli) by a series of new A=3,4,5,6-tetrahydrophthalimino, B=3-chloro-4,5,6,7-tetrahydro-2H-indazolyl and C=3,4-dimethylmaleimino group, and R-group substituted on the phenyl ring in 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2chloro-4-fluorobenzene derivatives were performed using comparative molecular field analyses (CoMFA) methodology with Gasteiger-Huckel charge. Four CoMFA models for the protox inhibition activities against root and shoot of the two plants were generated using 46 molecules as training set and the predictive ability of the each models was evaluated against a test set of 8 molecules. And the statistical results of these models with combination (SIH) of standard field, indicator field and H-bond field showed the best predictability of the protox inhibition activities based on the cross-validated value $r^2_{cv.}$ $(q^2=0.635\sim0.924)$, conventional coefficient $(r^2_{ncv.}=0.928\sim0.977)$ and PRESS value $(0.091\sim0.156)$, respectively. The activities exhibited a strong correlation with steric $(74.3\sim87.4%)$, electrostatic $(10.10\sim18.5%)$ and hydrophobic $(1.10\sim8.30%)$ factors of the molecules. The steric feature of molecule may be an important factor for the activities. We founded that an novel selective and higher protox inhibitors between the two plants may be designed by modification of X-subsitutents for barnyardgrass based upon the results obtained from CoMFA analyses.

Modification and Validation of an Analytical Method for Dieckol in Ecklonia Stolonifera Extract (곰피추출물의 지표성분 Dieckol의 분석법 개선 및 검증)

  • Han, Xionggao;Choi, Sun-Il;Men, Xiao;Lee, Se-jeong;Oh, Geon;Jin, Heegu;Oh, Hyun-Ji;Kim, Eunjin;Kim, Jongwook;Lee, Boo-Yong;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.3
    • /
    • pp.143-148
    • /
    • 2022
  • This study was to investigate an analytical method for determining dieckol content in Ecklonia stolonifera extract. According to the guidelines of International Conference on Harmonization. Method validation was performed by measuring the specificity, linearity, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ) of dieckol using high-performance liquid chromatography-photodiode array. The results showed that the correlation coefficient of calibration curve (R2) for dieckol was 0.9997. The LOD and LOQ for dieckol were 0.18 and 0.56 ㎍/mL, respectively. The intra- and inter-day precision values of dieckol were approximately 1.58-4.39% and 1.37-4.64%, respectively. Moreover, intra- and inter-day accuracies of dieckol were approximately 96.91-102.33% and 98.41-105.71%, respectively. Thus, we successfully validated the analytical method for estimating dieckol content in E. stolonifera extract.

Pilot-scale Applications of a Well-type Reactive Barrier using Autotrophic Sulfur-oxidizers for Nitrate Removal (독립영양 황탈질 미생물을 이용한 관정형 반응벽체의 현장적용성 연구)

  • Lee, Byung-Sun;Um, Jae-Yeon;Lee, Kyu-Yeon;Moon, Hee-Sun;Kim, Yang-Bin;Woo, Nam-C.;Lee, Jong-Min;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • The applicability of a well-type autotrophic sulfur-oxidizing reactive barrier (L $\times$ W $\times$ D = $3m\;{\times}\;4\;m\;{\times}\;2\;m$) as a long-term treatment option for nitrate removal in groundwater was evaluated. Pilot-scale (L $\times$ W $\times$ D = $8m\;{\times}\;4\;m\;{\times}\;2\;m$) flow-tank experiments were conducted to examine remedial efficacy of the well-type reactive barrier. A total of 80 kg sulfur granules as an electron donor and Thiobacillus denitrificans as an active bacterial species were prepared. Thiobacillus denitrificans was successfully colonized on the surface of the sulfur granules and the microflora transformed nitrate with removal efficiency of ~12% (0.07 mM) for 11 days, ~24% (1.3 mM) for 18 days, ~45% (2.4 mM) for 32 days, and ~52% (2.8 mM) for 60 days. Sulfur granules attached to Thiobacillus denitrificans were used to construct the well-type reactive barrier comprising three discrete barriers installed at 1-m interval downstream. Average initial nitrate concentrations were 181 mg/L for the first 28 days and 281 mg/L for the next 14 days. For the 181 mg/L (2.9 mM) plume, nitrate concentrations decreased by ~2% (0.06 mM), ~9% (0.27 mM), and ~15% (0.44 mM) after $1^{st}$, $2^{nd}$, and $3^{rd}$ barriers, respectively. For the 281 mg/L (4.5 mM) plume, nitrate concentrations decreased by ~1% (0.02 mM), ~6% (0.27 mM), and ~8% (0.37 mM) after $1^{st}$, $2^{nd}$, and $3^{rd}$ barriers, respectively. Nitrate plume was flowed through the flow-tank for 49 days by supplying $1.24\;m^3/d$ of nitrate solution. During nitrate treatment, flow velocity (0.44 m/d), pH (6.7 to 8.3), and DO (0.9~2.8 mg/L) showed little variations. Incomplete destruction of nitrate plume was attributed to the lack of retention time, rarely transverse dispersion, and inhibiting the activity of denitrification enzymes caused by relatively high DO concentrations. For field applications, it should be considered increments of retention time, modification of well placements, and intrinsic DO concentration.