• Title/Summary/Keyword: C. cinereus

Search Result 21, Processing Time 0.019 seconds

Characterization of UV-damaged repair genes in cells

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.50-54
    • /
    • 2000
  • The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. Here, we report the cloning and characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the sequence homologous DNA to RAD4 gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 3.4 kb BglII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. The isolated gene encodes a protein of 810 amino acids.

  • PDF

Characterization of Excision Repair Genes Related to Damaged DNA Repair from Eukaryotic Cells

  • Choi, In-Soon;Jin, Yong-Hwan;Park, Sang-Dai
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. The insert DNA of the RAD4 homolog was contained 3.2 kb. Here, we report the partial cloning and characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the sequence homologous DNA to RAD4 gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 1.2 kb PvuII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. The level of the transcript did not increase upon UV-irradiation, suggesting that the RAD4 homologous gene in C. cinereus is not UV-inducible.

  • PDF

Characterization of RAD4 Homologous Gene from Coprinus cinereus (균류 Coprinus cinereus에서 DNA 회복에 관여하는 RAD4 유사유전자의 분리와 특성)

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.522-528
    • /
    • 2003
  • The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. The insert DNA of the RAD4 homolog was contained 3.2 kb. Here, we report the characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the RAD4 homolog gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 1.2 kb PvuII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. In order to investigation whether the increase of transcripts by DNA damaging agent, transcripts levels were examined after treating the cells. The level of transcript did not increase by untraviolet light (UV). This result indicated that the RAD4 homologous gene is not UV inducible gene. Gene deletion experiments indicate that the RAD4 homologous gene is essential for cell viability.

Characterization of RAD3 Homologous Gene from Coprinus cinereus (균류 Coprinus cinereus에서 DNA 회복에 관여하는 RAD3 유사유전자의 분리와 특성)

  • Choi In Soon
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.1023-1027
    • /
    • 2004
  • The RAD3 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. An yeast RAD3 gene has been previously isolated by functional complementation. In order to identify the RAD3 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD3 DNA, and then isolated RAD3 homologous DNA from C. cinereus chromosome. The RAD3 homolog DNA was contained in 3.2 kb DNA fragment. Here, we report the results of characterization of a fungus C. cinereus homolog to the yeast RAD3 gene. Southern blot analysis confirmed that the C. cinereus chromosome contains the RAD3 homolog gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from the C. cinereus cells were hybridized with the 3.4 kb PvuII DNA fragment of the S. cerevisiae RAD3 gene, transcripts size of 2.8 kb were detected. In order to investigate whether the increase of the amount of transcripts by DNA damaging agent, transcript levels were examined after treating agents to the cells. The level of transcripts were not increased by untraviolet light (UV). This result indicated that the RAD3 homologous gene is not UV inducible gene. Gene deletion experiments indicate that the HRD3 gene is essential for viability of the cells and DNA repair function. These observations suggest an evolutionary conservation of other protein components with which HRD3 interacts in mediating its DNA repair and viability functions.

Electron and Light Microscopic Studies on the Development of Oidia from Somatic Mycelium of Coprinus cinereus

  • Yoon, Kwon-S.
    • Mycobiology
    • /
    • v.32 no.4
    • /
    • pp.164-169
    • /
    • 2004
  • Development of oidia, a type of thallic spores from monokaryotic mycelium of Coprinus cinereus was examined with electron microscope and light microscopes. Oidia formation in this fungus is unique in its mode of formation compared with other types of asexual sporogenesis. Oidiogenesis in C. cinereus is carried out in three steps: 1) Formation of oidiophore from the parent mycelium, 2) Formation of initials of oidial cells from swollen oidiophore, 3) Segmentation and detachment of mature oidial cell. Oidiophores appear to spring out singly as a swollen hyphal branches from the normal foot hyphae or sometimes coiled hypha. From the oidiophore, oidial branches sprout out forming a group of $2{\sim}6$, most often 4 oidial cells and each oidial cell undergoes a single mitosis resulting in 2 oidia. One of the sibling oidial cells in a group is frequently transformed into a new oidiophore, thus oidiogenic structures are tandemly produced at the several different levels.

Optimization of the Functional Expression of Coprinus cinereus Peroxidase in Pichia pastoris by Varying the Host and Promoter

  • Kim, Su-Jin;Lee, Jeong-Ah;Kim, Yong-Hwan;Song, Bong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.966-971
    • /
    • 2009
  • Peroxidase from Coprinus cinereus (CiP) has attracted attention for its high specific activity and broad substrate spectrum compared with other peroxidases. In this study, the functional expression of this peroxidase was successfully achieved in the methylotrophic yeast Pichia pastoris. The expression level of CiP was increased by varying the microbial hosts and the expression promoters. Since a signal sequence, such as the alpha mating factor of Saccharomyces cerevisiae, was placed preceding the cDNA of the CiP coding gene, expressed recombinant CiP (rCiP) was secreted into the culture broth. The Mut Pichia pastoris host showed a 3-fold higher peroxidase activity, as well as 2-fold higher growth rate, compared with the $Mut^s $ Pichia pastoris host. Furthermore, the AOX1 promoter facilitated a 5-fold higher expression of rCiP than did the GAP promoter.

Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from Coprinus cinereus: Roles of C-Terminal Basic Amino Acid-Rich Extension in Its SDS Resistance, Thermostability, and Activity

  • Hu, Hang;Chen, Kaixiang;Li, Lulu;Long, Liangkun;Ding, Shaojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.775-784
    • /
    • 2017
  • A neutral xylanase (CcXyn) was identified from Coprinus cinereus. It has a single GH10 catalytic domain with a basic amino acid-rich extension (PVRRK) at the C-terminus. In this study, the wild-type (CcXyn) and C-terminus-truncated xylanase ($CcXyn-{\Delta}5C$) were heterologously expressed in Pichia pastoris and their characteristics were comparatively analyzed with aims to examine the effect of this extension on the enzyme function. The circular dichorism analysis indicated that both enzymes in general had a similar structure, but $CcXyn-{\Delta}5C$ contained less ${\alpha}-helices$ (42.9%) and more random coil contents (35.5%) than CcXyn (47.0% and 32.8%, respectively). Both enzymes had the same pH (7.0) and temperature ($45^{\circ}C$) optima, and similar substrate specificity on different xylans. They all hydrolyzed beechwood xylan primarily to xylobiose and xylotriose. The amounts of xylobiose and xylotriose accounted for 91.5% and 92.2% (w/w) of total xylooligosaccharides (XOS) generated from beechwood by CcXyn and $CcXyn-{\Delta}5C$, respectively. However, truncation of the C-terminal 5-amino-acids extension significantly improved the thermostability, SDS resistance, and pH stability at pH 6.0-9.0. Furthermore, $CcXyn-{\Delta}5C$ exhibited a much lower $K_m$ value than CcXyn (0.27 mg/ml vs 0.83 mg/ml), and therefore, the catalytic efficiency of $CcXyn-{\Delta}5C$ was 2.4-times higher than that of CcXyn. These properties make $CcXyn-{\Delta}5C$ a good model for the structure-function study of $({\alpha}/{\beta})_8$-barrel-folded enzymes and a promising candidate for various applications, especially in the detergent industry and XOS production.

Fungal-Sporulation Suppressing Substances Produced by Pseudomonas aeruginosa KMCS-1

  • Min, Bu-Yong;Shim, Jae-Young;Kim, Kun-Woo;Lee, Jong-Kyu;Choi, Hyung-Tae;Yoon, Kwon-Sang
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.284-288
    • /
    • 1996
  • Among the bacteria isolated from compost piles of cattle excretion in a pasture located at the suburbs of Chunchon city, Pseudomonas aeruginosa KMCS-1 was selected for the test of antifungal substances produced. Six fractions were separated by silica gel column chromatography, and then the antifungal activity of each fraction was assayed against Escherichia coli, Bacillus subtilis, Candida albicans, Rhizopus sp., Aspergillus nidulans, Coprinus cinereus, and Pyricularia oryzae by paper disc method. Two fractions showed significant suppressive activities against A. nidulans, C. cinereus, and P. oryzae however, their mycelial growth was not affected by neither of these fractions. Inhibitory activities of these fractions to sporulation was assayed at the concentration of 50. 25, 12. 5, and 6.25 $\mu$g/ml and the average inhibition rates against sporulation of A. nidulans, C. cinereus, and P. oryzae were 94.0, 98.3, and 77.9%, respectively. Further purification and analysis of active substances are now being conducted.

  • PDF

A Study of the Diversity and Profile for Extracellular Enzyme Production of Aerobically Cultured Bacteria in the Gut of Muraenesox cinereus (갯장어(Muraenesox cinereus) 장으로부터 호기적 조건에서 분리된 미생물의 다양성 및 세포외 효소 생산능 분석에 관한 연구)

  • Lee, Yong-Jik;Oh, Do-Kyoung;Kim, Hye Won;Nam, Gae-Won;Sohn, Jae Hak;Lee, Han-Seung;Shin, Kee-Sun;Lee, Sang-Jae
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.248-255
    • /
    • 2019
  • This research confirmed the diversity and characterization of gut microorganisms isolated from the intestinal organs of Muraenesox cinereus, collected on the Samcheonpo Coast and Seocheon Coast in South Korea. To isolate strains, Marine agar medium was basically used and cultivated at $37^{\circ}C$ and pH7 for several days aerobically. After single colony isolation, totally 49 pure single-colonies were isolated and phylogenetic analysis was carried out based on the result of 16S rRNA gene DNA sequencing, indicating that isolated strains were divided into 3 phyla, 13 families, 15 genera, 34 species and 49 strains. Proteobacteria phylum, the main phyletic group, comprised 83.7% with 8 families, 8 genera and 26 species of Aeromonadaceae, Pseudoalteromonadaceae, Shewanellaceae, Enterobacteriaceae, Morganellaceae, Moraxellaceae, Pseudomonadaceae, and Vibrionaceae. To confirm whether isolated strain can produce industrially useful enzyme or not, amylase, lipase, and protease enzyme assays were performed individually, showing that 39 strains possessed at least one enzyme activity. Especially the Aeromonas sp. strains showed all enzyme activity tested. This result indicated that isolated strains have shown the possibility of the industrial application. Therefore, this study has contributed for securing domestic genetic resources and the expansion of scientific knowledge of the gut microbial community in Muraenesox cinereus of South Korea.

Preparation and Characteristics of Alkaline -active Cellulases from Coprinaceae

  • Lee, Jung-Kyung;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.68-76
    • /
    • 1999
  • Coprinus cinereus 2249 producing alkaline-active cellulase was screened from 29 species of Corpinaceae and constitutively produced alkaline carboxymethyl cellulase (CMCase) and filter paper cellulase (Fpase). When cultivated at pH 9.0, 25$^{\circ}C$ and 5 days, copnnus cinereus 2249 produced higher alkaline activity on 0.5% CMC, 2% wheat bran as carbon source and 0.5% peptone, 0.05% yeast extract as nitrongen source compared with other culture conditions. The level of cellulase production was higher in the presence of wheat bran than in the presence of CMC. The optimum temperature and pH for alkaline -active cellulase activity weas 50$^{\circ}C$ and 9, 0, respectively.

  • PDF