Browse > Article
http://dx.doi.org/10.5352/JLS.2003.13.4.522

Characterization of RAD4 Homologous Gene from Coprinus cinereus  

Choi, In-Soon (Marine-Biotechnology Center for Bio-Functional Material Industries Department of Life Science, Silla University)
Publication Information
Journal of Life Science / v.13, no.4, 2003 , pp. 522-528 More about this Journal
Abstract
The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. The insert DNA of the RAD4 homolog was contained 3.2 kb. Here, we report the characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the RAD4 homolog gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 1.2 kb PvuII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. In order to investigation whether the increase of transcripts by DNA damaging agent, transcripts levels were examined after treating the cells. The level of transcript did not increase by untraviolet light (UV). This result indicated that the RAD4 homologous gene is not UV inducible gene. Gene deletion experiments indicate that the RAD4 homologous gene is essential for cell viability.
Keywords
RAD4 homolog; C. cinereus; cell viability; DNA repair; essential gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carr, A. M., H. Schmidt, S. Kirchhoff, W. J. Muriel. K. S. Sheldrick, D.J. Griffiths, C. N. Basmacioglu, S. Subramani, M. Clegg, A. Nasim and A. Lehmann. 1994. The rad16 gene of Schzosaccharomyces pombe: A Homolog of the RAD1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 2029-2040.
2 Friedberg, E. C. 1988. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 52, 70-102.
3 Weber, C. A., Salazar, E. P., Stewart, S. A. and L. H. Hampton. 1990. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9, 1437-1447.
4 Brody, H. Griffith, J. Cuticchia, A. J. Arnold, J. and W. E. Timberlake. 1991. Chromosome specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids. Res. 19(11), 3105-3109.   DOI   ScienceOn
5 Choi, I. S., Kim, J. B., Jeon, S. H. and S. D. Park. 1993. Expression of RAD4 gene of Saccharomyces cerevisiae that can be propagated in Escherichia coli without inactivation. Biochem. Biophy. Res. Commu. 193(1), 91-197.
6 Fasullo, M, T. Bennett, P. Ahching and J. Koudelik. 1998. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocation. Mol. Cell Biol. 18-3, 1190-1200.
7 Ito, H. Fukuda, Y., Murata, K. and A. Kimmura, 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168.
8 Murray, J. M., Carr, A. M., Lehmann, A. R. and F. Z. Watts. 1991. Cloning and characterization of the rad15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 gene. Nucleic Acids Res. 19, 3525-3531.   DOI   ScienceOn
9 Caldecott, K. W., McKeown, C. K., Tucker, J. D., Ljungquist, S., and L. H. Thompson. 1994. An interation between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol. 14, 68-76.
10 Fenech, M., Carr, A. M., Murray, J., Watts, F. Z. and A. R. Lehmann. 1991. Cloning and characterization of the RAD4 gene of Schizosaccharomyces pombe; a gene showing short regions of sequence similarity to the human XRCC1 gene. Nucleic Acids Res. 19-24, 6737-6741.
11 Jang, Y.K, Jin, Y. H., Kim, M. J., Seong, R. H., Hong, S. H. and S. D. Park. 1995. Identification of the DNA damage-responsive elements of the rhp51+ gene, a recA and RAD51 homolog from the fission yeast Schizocaccharomyces pombe. Biochem. Mol. Biol. Int. 37, 337-344.
12 Guha, S. and W. Guschlbauer. 1992. Expression of Escherichia coli dam gene in Bacillus subtilis provokes DNA damage response: N6-methyadenine is removed by two repair pathways. Nucleic Acids Res. 20(14), 3607-3615.   DOI   ScienceOn
13 Hoeijmakers, J. H. J. and D. Bootsma. 1990. Molecular genetics of eukaryotic DNA excision repair. Cancer Cells 2, 311-320.
14 Van Duin, M., De Wit, J., Odijk, H., Westerveld, A., Yasui, A., Koken, M. H. M., Hoeijmakers, J. H. J. and D. Bootsma. 1986. Molecular characterization of the human excision repair gene ERCC1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell 44, 913-923.   DOI   ScienceOn
15 Weeda, G., Van Ham, R. C. A., Vermeulen, W., Bootsma, D., Van Der Eb, A. J. and J. H. J. Hoeijmakers. 1990. Molecular cloning and biological characterization of the human excision repair gene ERCC3. Cell 62, 6160-6171.
16 Kim, J. B., Jeon, S. H., Choi, I. S. and S. D. Park. 1994. Overexpressed RAD4 protein required for excision repair of Saccharomyces cerevisiae is toxic to the host Escherichia coli. In Vitro Toxicology 7(3), 269-275.
17 Reynolds, R. J. and E. C. Friedgerg. 1981. Molecular mechanisms of pyrimidine dimer excision of ultraviolet-irradiated deoxyribonucleic acid. J. Bacteriol. 146, 692-704.
18 Zolan, M. E., Crittenden, J., Heyler, N. K. and L. C. Seitz. 1992. Efficient isolation and mapping of rad genes of the fungus Coprinus cinereus using chromosome specific libraries. Nucleic Acids Res. 20(15), 3993-3999.   DOI   ScienceOn
19 Thompson, L. H., Mitchell, D. L., Regan, J. D., Bouffler, S. D., Stewart, S. A., Carrier, W. L., Nairn, R. S. and R. T. Johnson. 1988. CHO mutant UV61 removes photoproducts but not cyclobutane dimers. Mutagenesis 4, 140-146.   DOI   ScienceOn
20 Baker, S. M., Margison, G. P., and Striker, P., (1992): Inducible alkytransferase DNA repair proteins in the filamentous fungus nidulans. Nucleic Acids. Res. 20 (4), 645-651.   DOI   ScienceOn
21 Reynolds, P. R., Biggar, S., Prakash, L. and S. Prakash. 1992. The Shizosaccharomyces pombe rhp3+ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae. Nucleic Acids Res. 20(9), 2327-2334.   DOI   ScienceOn
22 McCready, S. J., Burkill, H., Evans, S. and B. S. Cox. 1989. The Saccharomyces cerevisiae RAD2 gene complements a Schizosaccharomyces pombe repair mutation. Curr. Genet. 15, 27-30.   DOI   ScienceOn
23 Choi, I. S., Kim, J. B. and S. D. Park. 1990. Nuc1eotide sequence of RAD4 gene of Saccharomyces cerevisiae that can be propagated in Escherichia coli without inactivation. Nucl.eic Acids Res. 18, 7137.   DOI   ScienceOn