Browse > Article
http://dx.doi.org/10.5352/JLS.2004.14.6.1023

Characterization of RAD3 Homologous Gene from Coprinus cinereus  

Choi In Soon (Department of Life Science, Silla University)
Publication Information
Journal of Life Science / v.14, no.6, 2004 , pp. 1023-1027 More about this Journal
Abstract
The RAD3 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. An yeast RAD3 gene has been previously isolated by functional complementation. In order to identify the RAD3 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD3 DNA, and then isolated RAD3 homologous DNA from C. cinereus chromosome. The RAD3 homolog DNA was contained in 3.2 kb DNA fragment. Here, we report the results of characterization of a fungus C. cinereus homolog to the yeast RAD3 gene. Southern blot analysis confirmed that the C. cinereus chromosome contains the RAD3 homolog gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from the C. cinereus cells were hybridized with the 3.4 kb PvuII DNA fragment of the S. cerevisiae RAD3 gene, transcripts size of 2.8 kb were detected. In order to investigate whether the increase of the amount of transcripts by DNA damaging agent, transcript levels were examined after treating agents to the cells. The level of transcripts were not increased by untraviolet light (UV). This result indicated that the RAD3 homologous gene is not UV inducible gene. Gene deletion experiments indicate that the HRD3 gene is essential for viability of the cells and DNA repair function. These observations suggest an evolutionary conservation of other protein components with which HRD3 interacts in mediating its DNA repair and viability functions.
Keywords
RAD3 homolog; C. cinereus; Cell viability; DNA repair; essential gene;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Friedberg, E. C. 1988. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 52, 70-102
2 Baker, S. M., G. P. Margison and P. Striker. 1992. Inducible alkytransferase DNA repair proteins in the filamentous fungus nidulans. Nucleic Acids. Res. 20 (4), 645-651   DOI   ScienceOn
3 Brody, H., J. .Griffith, A. Cuticchia, J. Arnold and W. E. Timberlake. 1991. Chromosome specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids. Res. 19(11), 3105-3109   DOI   ScienceOn
4 Fenech, M., A. Carr, J. Murray, F. Z. Watts and A. R. Lehmann. 1991. Cloning and characterization of the RAD3 gene of Schizosaccharomyces pombe; a gene showing short regions of sequence similarity to the human XRCC1 gene. Nucleic Acids Res. 19(24), 6737-6741   DOI   ScienceOn
5 Murray, J. M., A. Carr, A. R. Lehmann and F. Z. Watts. 1991. Cloning and characterization of the rad15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 gene. Nucleic Acids Res. 19, 3525-3531   DOI   ScienceOn
6 Reynolds, R. J. and E. C. Friedgerg. 1981. Molecular mechanisms of pyrimidine dimer excision of ultraviolet- irradiated deoxyribonucleic acid. J. Bacteriol. 146, 692-704
7 Reynolds, P. R., S. Biggar, L. Prakash and S. Prakash. 1992. The Shizosaccharomyces pombe rhp$3^+$ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae. Nucleic Acids Res. 20(9), 2327-2334   DOI   ScienceOn
8 Choi, I. S. 2003. Characterization of HRD3, a Schizosaccharomyces pombe gene involved in DNA repair and cell viability. Korean J. Biol. Sci. 7, 159-164   DOI
9 Thompson, L. H., M. H. Mitchell, J. D. Regan, S. D. Bouffler, S. A. Stewart, W. Carrier, W. L., Nairn and R. T. Johnson. 1988. CHO mutant UV61 removes photoproducts but not cyclobutane dimers. Mutagenesis 4, 140-146   DOI   ScienceOn
10 Van Duin, M., J. De Wit, H. Odijk, A. Westerveld, A. Yasui, M. H. M., Koken, J. H. J. Hoeijmakers and D. Bootsma. 1986. Molecular characterization of the human excision repair gene ERCC1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell 44, 913-923   DOI   ScienceOn
11 Kim, J. B., S. H. Jeon, I. S. Choi and S. D. Park. 1994. Overexpressed RAD3 protein required for excision repair of Saccharomyces cerevisiae is toxic to the host Escherichia coli. In Vitro Toxicology 7(3), 269-275
12 Weber, C. A., E. P. Salazar, S. A Stewart and L. H. Hampton. 1990. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9, 1437- 1447
13 Weeda, G., R. C. A. Van Ham, W. Vermeulen, D. Bootsma, A. J. Van Der Eb and J. H. J. Hoeijmakers. 1990. Molecular cloning and biological characterization of the human excision repair gene ERCC3. Cell 62, 6160-6171
14 Choi, I. S., J. B. Kim, S. H. Jeon and S. D. Park. 1993. Expression of RAD3 gene of Saccharomyces cerevisiae that can be propagated in Escherichia coli without inactivation. Biochem. Biophy. Res. Commu. 193(1), 91-197
15 Zolan, M. E., J. Crittenden, N. K. Heyler and L. C. Seitz. 1992. Efficient isolation and mapping of rad genes of the fungus Coprinus cinereus using chromosome specific libraries. Nucleic Acids Res. 20(15), 3993-3999   DOI   ScienceOn
16 McCready, S. J., H. Burkill, S. Evans and B. S. Cox. 1989. The Saccharomyces cerevisiae RAD2 gene complements a Schizosaccharomyces pombe repair mutation. Curr. Genet. 15, 27-30   DOI   ScienceOn
17 Ito, H. Y. Fukuda, K. Murata and A. Kimmura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168
18 Jang, Y. K, Y. H. Jin, M. J. Kim, R. H. Seong, S. H. Hong and S. D. Park. 1995. Identification of the DNA damage-responsive elements of the rhp$51^+$ gene, a recA and RAD51 homolog from the fission yeast Schizocaccharomyces pombe. Biochem. Mol. Biol. Int. 37, 337-344
19 Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Bacic local alignment search tool. J. Mol. Biol. 215, 403-410   DOI
20 Sanger, F., S. Nicklen and A. R. Coulson. 1977. DNA sequencing with chain termination inhibitors. Proc. Natl. Acad. Sci. USA. 74, 5463-5467   DOI   ScienceOn
21 Guha, S. and W. Guschlbauer. 1992. Expression of Escherichia coli dam gene in Bacillus subtilis provokes DNA damage response: $N^6$-methyadenine is removed by two repair pathways. Nucleic Acids Res. 20(14), 3607-3615   DOI   ScienceOn
22 Hoeijmakers, J. H. J. and D. Bootsma. 1990. Molecular genetics of eukaryotic DNA excision repair. Cancer Cells 2, 311-320
23 Caldecott, K. W., C. K., McKeown, J. D. Tucker, S. Ljungquist and L. H. Thompson. 1994. An interation between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol. 14, 68-76
24 Choi, I. S., J. B. Kim and S. D. Park. 1990. Nuc1eotide sequence of RAD3 gene of Saccharomyces cerevisiae that can be propagated in Escherichia coli without inactivation. Nucl.eic Acids Res. 18, 7137   DOI   ScienceOn
25 Carr, A. M., H. Schmidt, S. Kirchhoff, W. J. Muriel. K. S. Sheldrick, D. J. Griffiths, C. N. Basmacioglu, S. Subramani, M. Clegg, A. Nasim and A. Lehmann. 1994. The rad16 gene of Schzosaccharomyces pombe: A Homolog of the RAD1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 2029- 2040