• Title/Summary/Keyword: C-type connections

Search Result 50, Processing Time 0.03 seconds

Cyclic loading tests for precast concrete cantilever walls with C-type connections

  • Lim, Woo-Young;Hong, Sung-Gul
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.753-777
    • /
    • 2014
  • This study investigates the behavior of precast concrete cantilever wall systems with new vertical connections under cyclic loading. C-type steel connections for PC wall systems are proposed for the transfer of bending moments between walls in the vertical direction, whereas a shear key in the center of the wall is prepared to transfer shear forces by bearing pressure. The proposed connections are assembled easily because the directions of the slots are different at the edges of the walls. Structural performance characteristics such as the strength, ductility, and failure modes of test specimens were investigated. The longitudinal reinforcing steel bars, which are connected to the C-type connections, yielded first. Ultimate deformation was terminated owing to premature failure of the connections. The strength and deformation obtained from the cross-sectional analysis were generally similar to experimental data.

The induced and intrinsic connections of cartan type in a Finslerian hypersurface

  • Park, Hong-Suh;Park, Ha-Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.423-443
    • /
    • 1996
  • The main purposer of the present paper is to derive the induced (Finsler) connections on the hypersurface from the Finsler connections of Cartan type (a Wagner, Miron, Cartan C- and Cartan Y- connection) of a Finsler space and to seek the necessary and sufficient conditions that the induced connections coincide with the intrinsic connections. And we show the differences of quantities with respect to the respective a connections and an induced Cartan connection. Finally we show some examples.

  • PDF

Cyclic testing of weak-axis steel moment connections

  • Lee, Kangmin;Li, Rui;Jung, Heetaek;Chen, Liuyi;Oh, Kyunghwan
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.507-518
    • /
    • 2013
  • The seismic performance of six types of weak-axis steel moment connections was investigated through cyclic testing of six full-scale specimens. These weak-axis moment connections were the column-tree type, WUF-B type, FF-W type, WFP type, BFP-B type and DST type weak-axis connections. The testing results showed that each of these weak-axis connection types achieved excellent seismic performance, except the WFP and the WUF-B types. The WFP and WUF-B connections displayed poor seismic performance because a fracture appeared prematurely at the weld joint due to stress concentrations. The column-tree type connection showed the best seismic behavior such that the story drift ratio could reach 5%.

Behavior of Precast Concrete Shear Walls with C-Type Connections (C형 접합부를 이용한 프리캐스트 콘크리트 전단벽의 거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.461-472
    • /
    • 2010
  • This paper investigates the behavior of precast concrete (PC) shear walls with a new vertical connections for a fast remodeling construction. The C-type vertical connections for the PC wall systems are proposed for transfer of bending moment between top and bottom walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing action. The proposed vertical connections allows easy fabrication thanks to slots at the edges of wall in opposite directions. The plane PC wall systems subject to lateral load are compared with ordinary wall systems by investigating the effects of connection on the stiffness, strength, ductility, and failure modes of whole systems. The load-displacement relationship and influence of premature failure of connections are examined. The experimental test showed that the longitudinal reinforcing steel bars placed at the edges of walls yielded first and the ultimate deformation were terminated due to premature failure of connections. The diagonal reinforcements for efficient shear transfer in the walls were not effective. The strength and deformation obtained through the section analysis were generally in agreement with the experimental data, and indicated that. Gap opening contributed to the deformation behavior more than any other factors.

THE INDUCED AND INTRINSIC CONNECTIONS OF BERWALD TYPE IN A FINSLERIAN HYPERSURFACE

  • Ha Yong Park;Hong Suh Park
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.383-391
    • /
    • 1997
  • The main purpose of the present paper is to derive the induced (Finsler) connections on the hypersurface from the Finsler connections of Berwald type (a Berwald h-recurrent connection and a $F\Gamma$' connection) of a Finsler space and to seek the necessary and sufficient conditions that the induced connections coincide with the intrinsic connections. And we show the quantities and relations with respect to the respective induced connections. Finally we show some examples.

  • PDF

A NOTE ON STATISTICAL MANIFOLDS WITH TORSION

  • Hwajeong Kim
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.621-628
    • /
    • 2023
  • Given a linear connection ∇ and its dual connection ∇*, we discuss the situation where ∇ + ∇* = 0. We also discuss statistical manifolds with torsion and give new examples of some type for linear connections inducing the statistical manifolds with non-zero torsion.

Seismic Behavior of Precast Frames with Hybrid Beam-Column Connections

  • Moon, Jeong-Ho;Lee, Yong-Ju
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.191-199
    • /
    • 1999
  • A Precast frame system with hybrid beam-column connections was proposed in this study. An analytical study evaluated the system under seismic loadings. Four buildings with different heights were modeled in which each building had three types of joint details (A. B, C). Thus, twelve buildings were examined with variables such as building height and joint detail. Four earthquake records were applied to the buildings as input ground motions. All the records were normalized to the intensity of 0.25g to assess behavior under the same intensity of seismic excitation. All the joint types showed almost identical results except for the Mexico earthquake which was scaled up from 0. 1g to 0.25g. Buildings with the type C joint exhibited the largest deflection for the Mexico earthquake. It was concluded that type B joint could be used in a high seismic zone and the type C joint could possibly be used in the regions of low to medium seismic activity.

  • PDF

Precast Shear Wall Systems with C Type Connections (C형 접합부를 이용한 프리캐스트 전단벽 시스템에 관한 연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.217-224
    • /
    • 2006
  • This thesis investigates the behavior of precast wall systems with a new vertical connection which are proportioned by the displacement based design. The proposed precast wall systems are supposed to provide additional spaces and seismic strengthening in remodeling existing residential buildings. For a fast remodeling constructions using PC wails require an efficient, economic fabrication method. A C-type vertical connections for PC wall systems is proposed for transfer of bending moment between walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing. The proposed vertical connection allows us easy fabrication because of different direction of slots at the edges of wall. The dimension of C-type connection components are determined by engineering models and a series of test.

  • PDF

Shear Reinforcement for Flat Plate-Column Connections using Lattice Bars (래티스형 철근을 이용한 무량판 구조의 접합부 전단보강)

  • 안경수;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • In flat-plate floors, slab-column connections are broken down with a brittle shear failure. And it can cause the collapse of the whole structures. Thus, the proper method of shear reinforcement in flat plate-column connections must be required. The objective of this study is to compare shear reinforcement specimens using lattice bars to no shear reinforcement specimens in view of shear strength and ductility of the flat plate-column connections. The test results have shown that shear reinforcement specimens varying $\rho$, $b_0$/d and $C_1$/$C_2$ increase in shear strength by 36.85% and in ductility by 9.16 for no shear reinforcement specimens on the average. This results confirm the effectiveness of this type of shear reinforcement in improving shear strength and ductility.

  • PDF

Rehabilitation of exterior RC beam-column connections using epoxy resin injection and galvanized steel wire mesh

  • Marthong, Comingstarful
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.253-263
    • /
    • 2019
  • The efficacy of a galvanized steel wire mesh (GSWM) as an alternative material for the rehabilitation of RC beam-column connections damaged due to reversed cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged zone and then confined using three types of locally available GSWM mesh. The mesh types used herein are (a) Weave type square mesh with 2mm grid opening (GWSM-1) (b) Twisted wire mesh with hexagonal opening of 15 mm (GSWM-2) and (c) welded wire mesh with square opening of 25 mm (GSWM-3). A reduced scale RC beam-column connection detailed as per ductile detailing codes of Indian Standard was considered for the experimental investigation. The rehabilitated specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using GSWM-1 significantly enhanced the seismic capacity of the connections.