• Title/Summary/Keyword: C-terminal deletion

Search Result 67, Processing Time 0.026 seconds

Analysis of the functional domains of CFTase gene cloned from Xanthomonas oryzae #5 using recombinant deletion mutant

  • Kim, Byeong-U;Yu, Dong-Ju;Ryu, Hye-Gyeong;Park, Ju-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.727-730
    • /
    • 2001
  • Various recombinant deletion mutants were constructed from cycloinulo - oligosaccharide fructanotransferase(CFTase) gene of Xanthomonas oryzae #5 . The mutants were expressed in Escherichia coli DH5${\alpha}$. We were able to obtain three recombinant proteins were purified, and examine their CFTase and hydrolyzing activity. N-terminal deletion mutant had both CFTase activity and hydrolyzing activity. however, in C-terminal and N,C-terminal deletion mutant disappeared CFTase activity, but hydrolyzing activity remained. From there results, it seems that the C-terminal region(amino acid $1173{\sim}1333$) is important for cyclization.

  • PDF

Biochemical characteristics of functional domains using feline foamy virus integrase mutants

  • Yoo, Gwi-Woong;Shin, Cha-Gyun
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • We constructed deletion mutants and seven point mutants by polymerase chain reaction to investigate the specificity of feline foamy virus integrase functional domains. Complementation reactions were performed for three enzymatic activities such as 3'-end processing, strand transfer, and disintegration. The complementation reactions with deletion mutants showed several activities for 3'-end processing and strand transfer. The conserved central domain and the combination of the N-terminal or C-terminal domains increased disintegration activity significantly. In the complementation reactions between deletion and point mutants, the combination between D107V and deletion mutants revealed 3'-end processing activities, but the combination with others did not have any activity, including strand transfer activities. Disintegration activity increased evenly, except the combination with glutamic acid 200. These results suggest that an intact central domain mediates enzymatic activities but fails to show these activities in the absence of the N-terminal or C-terminal domains.

Functional Expression and Characterization of C-terminal Mutant of 4-Aminobutyrate Aminotransferase

  • Sung, Bo-Kyung;Cho, Jung-Jong;Kim, Young-Tae
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.181-188
    • /
    • 1999
  • 4-Aminobutyrate aminotransferase plays an essential role in the 4-aminobutyric acid shunt, converting 4-aminobutyrate to succinic semialdehyde. Recombinant 4-aminobutyrate aminotransferases were overexpressed as their catalytically active forms in E. coli by coproduction with thioredoxin and their solubilities were also dramatically increased. In order to study the structural and functional aspects of the C-terminal domain of brain 4-aminobutyrate aminotransferase, we have constructed a C-terminal mutant of pig brain 4-aminobutyrate aminotransferase and analyzed the functional and structural roles of C-terminal amino acids residues on the enzyme. The deletion of five amino-acid residues from C-terminus did not interfere with the kinetic parameters and functional properties of the enzyme. Also, the deletion did not affect the dimeric structure of the protein aligned along the subunit interface at neutral pH. However, the deletion of the C-terminal region of the protein changed the stability of its dimeric structure at acidic pH. The dissociation of the enzyme acidic, facilitated by the deletion of five amino acids from C-terminus, abolished the catalytic activity.

  • PDF

Characterization of Human Foamy Virus Integrase Mutant (인간 포미바이러스 인테그라제 돌연변이의 특성)

  • Kang Seung Yi;Oh Soo A;Lee Hak Sung;Han Sung Tai;Shin Cha-Gyun
    • YAKHAK HOEJI
    • /
    • v.49 no.3
    • /
    • pp.198-204
    • /
    • 2005
  • Human foamy virus (HFV) integrase mediates integration of viral c-DNA into cellular DNA. In this process, HFV integrase recognizes its own viral DNA specifically and catalyzes insertion of viral c-DNA. In order to study catalytic domains and residues, three deletion mutants and two point mutants of HFV integrase were constructed and analyzed with respect to enzymatic activities. The C-terminal deletion mutant showed decreased enzymatic activities while the N-terminal deletion mutant lost the activities completely, indicating that the N-terminal domain is more important than the C-terminal domain in enzymatic reaction. The point mutants, in which an aspartic acid at the 164th position or a glutamic acid at the 200th position of the HFV integrase protein was changed to an alanine, lost the enzymatic activities completely. However, they were well complemented with other defective deletion mutants to recover enzymatic activities partially. Therefore, these results suggest that the aspartic acid and glutamic acid at the respective 164th and 200th positions are catalytic residues for enzymatic reaction.

Synthesis and Characterization of GGN4 and its Tryptophan Substituted Analogue Peptides

  • Kim, Se-Ha;Kim, Ji-Young;Lee, Byeong-Jae;Kim, Soon-Jong
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 1999
  • Gaegurin 4 (GGN4), a broad-spectrum antibiotic, is a 37-amino acid peptide isolated from the Korean frog, Rana rugosa. In this study, we have chemically synthesized and purified GGN4 analogues where the C-terminal portion is truncated and/or substituted with tryptophan. These peptides show significantly different biological activities depending on the location of tryptophan and the number of amino acids truncated from the C-terminal end. While deletion of 9 amino acids from the C-terminal seems to be marginally tolerable in maintaining the antimicrobial activity, further deletion of up to 14 amino acid residues decreases the potency by more than 60-fold towards Gram-positive, and 10-fold towards Gram-negative, bacteria. Surprisingly, the reduced activity of the shorter peptide can be completely restored by a single substitution of aspartic acid 16 to tryptophan 16 (D16W). Also, the truncation seems to decrease the specificity of antibiotic activity more towards Gram-positive than towards Gram-negative bacteria studied. These data suggest a partial role of the C-terminal region in determining the binding specificity and the activity of peptides upon binding to their target cell membranes.

  • PDF

Influence of the Hydrophobic Amino Acids in the N- and C-Terminal Regions of Pleurocidin on Antifungal Activity

  • Lee, June-Young;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1192-1195
    • /
    • 2010
  • To investigate the influence of the N- or C-terminal regions of pleurocidin (Ple) peptide on antifungal activity, four analogs partially truncated in the N- or C-terminal regions were designed and synthesized. Circular dichroism (CD) spectroscopy demonstrated that all the analogs maintained an alpha-helical structure. The antifungal susceptibility testing also showed that the analogs exhibited antifungal activities against human fungal pathogens, without hemolytic effects against human erythrocytes. The result further indicated that the analogs had discrepant antifungal activities [Ple>Ple (1-22)>Ple (4-25)>Ple (1- 19)>Ple (7-25)] and that N-terminal deletion affected the activities much more than C-terminal deletion. Hydrophobicity [Ple>Ple (1-22)>Ple (4-25)>Ple (1-19)> Ple (7-25)] was thought to have been one of the consistent factors that influenced these activity patterns, rather than the other primary factors like the helicity [Ple>Ple (4-25) >Ple (1-22)>Ple (1-19)>Ple (7-25)] or the net charge [Ple=Ple (4-25)=Ple (7-25)>Ple (1-22)=Ple (1-19)] of the peptides. In conclusion, the hydrophobic amino acids in the N-terminal region of Ple is more crucial for antifungal activity than those in the C-terminal region.

The Influence of the N-Terminal Region of Antimicrobial Peptide Pleurocidin on Fungal Apoptosis

  • Choi, Hyemin;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1386-1394
    • /
    • 2013
  • In our previous study, the 25-mer antimicrobial peptide pleurocidin (Ple) had been thought to induce apoptosis in Candida albicans. This study demonstrated that reactive oxygen species (ROS) production was a major cause of Ple-induced apoptosis. Four truncated analogs were synthesized to understand the functional roles in the N- and C-terminal regions of Ple on the apoptosis. Ple, Ple (4-25), Ple (1-22), and Ple (1-19) produced ROS, including hydroxyl radicals, on the order of [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19)], whereas Ple (7-25) did not induce any ROS production. The results suggested that the N-terminal deletion affected the ROS-inducing activities much more than that of the C-terminal deletion, and net hydrophobicity [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19) > Ple (7-25)] was related to ROS generation rather than other primary factors like net charge. Hence, we focused on the N-terminal-truncated peptides, Ple (4-25) and Ple (7-25), and examined other apoptotic features, including mitochondrial membrane depolarization, caspase activation, phosphatidylserine externalization, and DNA and nuclear fragmentation. The results also confirmed the disappearance of apoptotic activity of Ple (7-25) by the truncation of the N-terminal region (1-6) and the specific activity patterns between Ple and analogs. In conclusion, the N-terminal region of Ple played an important role in apoptosis.

Cytotoxicity Test of Pokeweed Antiviral Protein Type I Gene by Using Yeast Expression System (효모 발현 시스템을 이용 PAP(Pokeweed Antiviral Protein) 유전자의 세포독성 연구)

  • 김선원;박성원;강신웅;이영기;이종철;최순용;이청호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.2
    • /
    • pp.133-140
    • /
    • 2001
  • PAP-I cDNA was synthesized from total RNA of Phytolacca americana leaves by RT-PCR, and then subcloned to recombinant vector pBluescript II SK-. Using PCR with primers designed in our laboratory, we could get the 9 deletion mutant PAP-I cDNA fragments. The first of the fragments was deleted by 66bp from immature N-terminal and then the rest were deleted by 90bp sequentially. Sequentially deletion mutant PAP-I cDNAs were inserted to pAc55M, on down-stream of gall promoter. Recombinant pAc55M was transformed to yeast cells, psy1 and the cells were spreaded on SC_urn-/glucose plate media. Colonies on SC_ura-/glucose plate were streaked on the same position of SC_ura-/glucose and SC_ura-/galactose plate, and we selected colonies growing on both plates, which carry non-cytotoxic deleted mutant PAP-I cDNA. We selected 4 deletion mutant PAP-I cDNAs which have not cytotoxicity.

  • PDF

Display of Proteins on the Surface of Escherichia coli by C-Terminal Deletion Fusion to the Salmonella typhimurium OmpC

  • CHOI JONG-HYUN;CHOI, JONG-IL;LEE, SANG-YUP
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.141-146
    • /
    • 2005
  • A new system for displaying proteins on the surface of Escherichia coli was developed using the Salmonella typhimurium outer membrane protein C (OmpC) as an anchoring motif. The C-terminal deletionfusion strategy was developed to fuse the polyhistidine peptides and green fluorescent protein (GFP) to the Cterminal of the truncated functional portion of OmpC. The polyhistidine peptides of up to 243 amino acids could besuccessfully displayed on the E. coli cell surface, which allowed recombinant E. coli to adsorb up to 34.2 μmol of Cd2+ per gram dry cell weight. The GFP could also be successfully displayed on the E. coli cell surface. These results suggest that the C-terminal deletion-fusion strategy employing the S. typhimurium OmpC as an anchoring motif provides a new efficient way for the display of large proteins on the surface of E. coli.

The Specific Binding Mechanism of the Antimicrobial Peptide CopA3 to Caspases

  • Ho Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.243-249
    • /
    • 2023
  • We recently found that the insect-derived antimicrobial peptide CopA3 (LLCIALRKK) directly binds to and inhibits the proteolytic activation of caspases, which play essential roles in apoptotic processes. However, the mechanism of CopA3 binding to caspases remained unknown. Here, using recombinant GST-caspase-3 and -6 proteins, we investigated the mechanism by which CopA3 binds to caspases. We showed that replacement of cysteine in CopA3 with alanine caused a marked loss in its binding activity towards caspase-3 and -6. Exposure to DTT, a reducing agent, also diminished their interaction, suggesting that this cysteine plays an essential role in caspase binding. Experiments using deletion mutants of CopA3 showed that the last N-terminal leucine residue of CopA3 peptide is required for binding of CopA3 to caspases, and that C-terminal lysine and arginine residues also contribute to their interaction. These conclusions are supported by binding experiments employing direct addition of CopA3 deletion mutants to human colonocyte (HT29) extracts containing endogenous caspase-3 and -6 proteins. In summary, binding of CopA3 to caspases is dependent on a cysteine in the intermediate region of the CopA3 peptide and a leucine in the N-terminal region, but that both an arginine and two adjacent lysines in the C-terminal region of CopA3 also contribute. Collectively, these results provide insight into the interaction mechanism and the high selectivity of CopA3 for caspases.