Browse > Article
http://dx.doi.org/10.4014/jmb.1306.06012

The Influence of the N-Terminal Region of Antimicrobial Peptide Pleurocidin on Fungal Apoptosis  

Choi, Hyemin (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Lee, Dong Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.10, 2013 , pp. 1386-1394 More about this Journal
Abstract
In our previous study, the 25-mer antimicrobial peptide pleurocidin (Ple) had been thought to induce apoptosis in Candida albicans. This study demonstrated that reactive oxygen species (ROS) production was a major cause of Ple-induced apoptosis. Four truncated analogs were synthesized to understand the functional roles in the N- and C-terminal regions of Ple on the apoptosis. Ple, Ple (4-25), Ple (1-22), and Ple (1-19) produced ROS, including hydroxyl radicals, on the order of [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19)], whereas Ple (7-25) did not induce any ROS production. The results suggested that the N-terminal deletion affected the ROS-inducing activities much more than that of the C-terminal deletion, and net hydrophobicity [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19) > Ple (7-25)] was related to ROS generation rather than other primary factors like net charge. Hence, we focused on the N-terminal-truncated peptides, Ple (4-25) and Ple (7-25), and examined other apoptotic features, including mitochondrial membrane depolarization, caspase activation, phosphatidylserine externalization, and DNA and nuclear fragmentation. The results also confirmed the disappearance of apoptotic activity of Ple (7-25) by the truncation of the N-terminal region (1-6) and the specific activity patterns between Ple and analogs. In conclusion, the N-terminal region of Ple played an important role in apoptosis.
Keywords
Pleurocidin; reactive oxygen species; terminal region; Pleuronectes americanus; antimicrobial peptide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Eisenberg T, Büttner S, Kroemer G, Madeo F. 2007. The mitochondrial pathway in yeast apoptosis. Apoptosis 12: 1011-1123.   DOI   ScienceOn
2 Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, Francois IE, Madeo F, et al. 2009. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 583: 2513-2516.   DOI   ScienceOn
3 Bossy-Wetzel E, Newmeyer DD, Green DR. 1998. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVDspecific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17: 37-49.   DOI   ScienceOn
4 Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250.   DOI   ScienceOn
5 Cho J, Lee DG. 2011. Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie 93: 1873-1879.   DOI   ScienceOn
6 Cole AM, Weis P, Diamond G. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272: 12008-12013.   DOI   ScienceOn
7 Fehlbaum P, Bulet P, Chernysh S, Briand JP, Roussel JP, Letellier L, et al. 1996. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 93: 1221-1225.   DOI   ScienceOn
8 Fu X, Wan S, Lyu YL, Liu LF, Qi H. 2008. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS One 3: e2009.   DOI   ScienceOn
9 Hoskin DW, Ramamoorthy A. 2008. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 1778: 357-375.   DOI   ScienceOn
10 Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, et al. 2007. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim. Biophys. Acta 1768: 1400-1405.   DOI   ScienceOn
11 Kanthawong S, Bolscher JG, Veerman EC, van Marle J, Nazmi K, Wongratanacheewin S, et al. 2010. Antimicrobial activities of LL-37 and its truncated variants against Burkholderia thailandensis. Int. J. Antimicrob. Agents 36: 447-452.   DOI   ScienceOn
12 Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, et al. 2002. A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9: 911-917.   DOI   ScienceOn
13 Lee J, Hwang JS, Hwang IS, Cho J, Lee E, Kim Y, et al. 2012. Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic. Biol. Med. 52: 2302-2311.   DOI   ScienceOn
14 Li M, Wu RS, Tsai JS. 2003. DAPI derivative: a fluorescent DNA dye that can be covalently attached to biomolecules. Bioorg. Med. Chem. Lett. 13: 4351-4354.   DOI   ScienceOn
15 Madeo F, Frohlich E, Frohlich KU. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139: 729-734.   DOI   ScienceOn
16 Park Y, Lee DG, Kim HN, Kim HK, Woo ER, Choi CH, et al. 2005. Importance of the length of the N- and C-terminal regions of Helicobacter pylori ribosomal protein L1 (RPL1) on its antimicrobial activity. Biotechnol. Lett. 24: 1209-1215.
17 Merrifield B. 1986. Solid phase synthesis. Science 232: 341-347.   DOI
18 Miao H, Zhao L, Li C, Shang Q, Lu H, Fu Z, et al. 2012. Inhibitory effect of Shikonin on Candida albicans growth. Biol. Pharm. Bull. 35: 1956-1963.   DOI
19 Morton CO, Dos Santos SC, Coote P. 2007. An amphibianderived, cationic, alpha-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol. Microbiol. 65: 494-507.   DOI   ScienceOn
20 Pereira C, Silva RD, Saraiva L, Johansson B, Sousa MJ, Corte-Real M. 2008. Mitochondria-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1286-1302.   DOI   ScienceOn
21 Rollet-Labelle E, Grange MJ, Elbim C, Marquetty C, Gougerot-Pocidalo MA, Pasquier C. 1998. Hydroxyl radical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis. Free Radic. Biol. Med. 24: 563-572.   DOI   ScienceOn
22 Peters BM, Shirtliff ME, Jabra-Rizk MA. 2010. Antimicrobial peptides: primeval molecules or future drugs? PLOS Pathog. 6: e1001067.   DOI   ScienceOn
23 Phillips AJ, Sudbery I, Ramsdale M. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100: 14327-14332.   DOI   ScienceOn
24 Ranganathan S, Harmison GG, Meyertholen K, Pennuto M, Burnett BG, Fischbeck KH. 2009. Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 18: 27-42.   DOI   ScienceOn
25 Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T. 2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278: 3170-3175.   DOI   ScienceOn
26 Yeaman MR, Yount NY. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55.   DOI   ScienceOn
27 Sheppard R. 2003. The fluorenylmethoxycarbonyl group in solid phase synthesis. J. Pept. Sci. 9: 545-552.   DOI   ScienceOn
28 Wadskog I, Maldener C, Proksch A, Madeo F, Adler L. 2004. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol. Biol. Cell 15: 1436-1444.
29 Yao G, Ling L, Luan J, Ye D, Zhu P. 2007. Nonylphenol induces apoptosis of Jurkat cells by a caspase-8 dependent mechanism. Int. Immunopharmacol. 7: 444-453.   DOI   ScienceOn
30 Zhang L, Rozek A, Hancock RE. 2001. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276: 35714-35722.   DOI   ScienceOn
31 Zunino SJ, Ducore JM, Storms DH. 2007. Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells. Cancer Lett. 254: 119-127.   DOI   ScienceOn