• Title/Summary/Keyword: C-mean Clustering

Search Result 85, Processing Time 0.023 seconds

Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering (차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구)

  • Jin, Young-Goun;Kim, Tae-Gyun
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.93-100
    • /
    • 1997
  • In general, fuzzy C-means clustering method was used on the segmentation of true color image. However, this method requires number of clusters as an input. In this study, we suggest new method that uses subtractive and gravity fuzzy C-means clustering. We get number of clusters and initial cluster centers by applying subtractive clustering on color image. After coarse segmentation of the image, we apply gravity fuzzy C-means for optimizing segmentation of the image. We show efficiency of the proposed algorithm by qualitative evaluation.

  • PDF

Color image segmentation using the possibilistic C-mean clustering and region growing (Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할)

  • 엄경배;이준환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF

An Watermarking Method based on Singular Vector Decomposition and Vector Quantization using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byeong-Hui;Jang, U-Seok;Gang, Hwan-Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.267-271
    • /
    • 2007
  • 본 논문은 원본이미지와 은닉이미지의 좋은 압축률과 만족할만한 이미지의 질, 그리고 외부공격에 강인한 이미지은닉의 한 방법으로 특이치 분해와 퍼지 군집화를 이용한 벡터양자화를 이용한 워터마킹 방법을 소개하였다. 실험에서는 은닉된 이미지의 비가시성과 외부공격에 대한 강인성을 증명하였다.

  • PDF

Design and Comparison of Error Correctors Using Clustering in Holographic Data Storage System

  • Kim, Sang-Hoon;Kim, Jang-Hyun;Yang, Hyun-Seok;Park, Young-Pil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1076-1079
    • /
    • 2005
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time in. Today any data storage system can not satisfy these conditions, but holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System architecture without mechanical actuating part is possible, so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this paper, to correct errors of binary data stored in holographic digital data storage system, find cluster centers using clustering algorithm and reduce intensities of pixels around centers. We archive the procedure by two algorithms of C-mean and subtractive clustering, and compare the results of the two algorithms. By using proper clustering algorithm, the intensity profile of data page will be uniform and the better data storage system can be realized.

  • PDF

Design and Comparison of Error Reduction Methods Using Clustering in Holographic Data Storage System (홀로그래픽 정보 저장 장치에서 클러스터링을 이용한 에러 감소 기법 제안 및 비교)

  • Kim Sang-Hoon;Kim Jang-Hyun;Yang Hyun-Seok;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.83-87
    • /
    • 2005
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time in. Today any data storage system can not satisfy these conditions, but holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System architecture without mechanical actuating pare is possible, so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this paper, to correct errors of binary data stored in holographic digital data storage system, find cluster centers using clustering algorithm and reduce intensities of pixels around centers. We archive the procedure by two algorithms of C-mean and subtractive clustering, and compare the results of the two algorithms. By using proper clustering algorithm, the intensity profile of data page will be uniform and the better data storage system can be realized.

  • PDF

Design of Meteorological Radar Pattern Classifier Using Clustering-based RBFNNs : Comparative Studies and Analysis (클러스터링 기반 RBFNNs를 이용한 기상레이더 패턴분류기 설계 : 비교 연구 및 해석)

  • Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.536-541
    • /
    • 2014
  • Data through meteorological radar includes ground echo, sea-clutter echo, anomalous propagation echo, clear echo and so on. Each echo is a kind of non-precipitation echoes and the characteristic of individual echoes is analyzed in order to identify with non-precipitation. Meteorological radar data is analyzed through pre-processing procedure because the data is given as big data. In this study, echo pattern classifier is designed to distinguish non-precipitation echoes from precipitation echo in meteorological radar data using RBFNNs and echo judgement module. Output performance is compared and analyzed by using both HCM clustering-based RBFNNs and FCM clustering-based RBFNNs.

An Watermarking Method Based on Singular Vector Decomposition and Vector Quantization Using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byung-Hee;Jang, Woo-Seok;Kang, Hwan-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.964-969
    • /
    • 2007
  • In this paper, we propose the image watermarking method for good compression ratio and satisfactory image quality of the cover image and the embedding image. This method is based on the singular value decomposition and the vector quantization using fuzzy c-mean clustering. Experimental results show that the embedding image has invisibility and robustness to various serious attacks. The advantage of this watermarking method is that we can achieve both the compression and the watermarking method for the copyright protection simultaneously.

A Study on Performance Evaluation of Clustering Algorithms using Neural and Statistical Method (클러스터링 성능평가: 신경망 및 통계적 방법)

  • 윤석환;신용백
    • Journal of the Korean Professional Engineers Association
    • /
    • v.29 no.2
    • /
    • pp.71-79
    • /
    • 1996
  • This paper evaluates the clustering performance of a neural network and a statistical method. Algorithms which are used in this paper are the GLVQ(Generalized Loaming vector Quantization) for a neural method and the k -means algorithm for a statistical clustering method. For comparison of two methods, we calculate the Rand's c statistics. As a result, the mean of c value obtained with the GLVQ is higher than that obtained with the k -means algorithm, while standard deviation of c value is lower. Experimental data sets were the Fisher's IRIS data and patterns extracted from handwritten numerals.

  • PDF

A Study on Data Clustering Method Using Local Probability (국부 확률을 이용한 데이터 분류에 관한 연구)

  • Son, Chang-Ho;Choi, Won-Ho;Lee, Jae-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • In this paper, we propose a new data clustering method using local probability and hypothesis theory. To cluster the test data set we analyze the local area of the test data set using local probability distribution and decide the candidate class of the data set using mean standard deviation and variance etc. To decide each class of the test data, statistical hypothesis theory is applied to the decided candidate class of the test data set. For evaluating, the proposed classification method is compared to the conventional fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm. The simulation results show more accuracy than results of fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm.

Adjustment of the Mean Field Rainfall Bias by Clustering Technique (레이더 자료의 군집화를 통한 Mean Field Rainfall Bias의 보정)

  • Kim, Young-Il;Kim, Tae-Soon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.659-671
    • /
    • 2009
  • Fuzzy c-means clustering technique is applied to improve the accuracy of G/R ratio used for rainfall estimation by radar reflectivity. G/R ratio is computed by the ground rainfall records at AWS(Automatic Weather System) sites to the radar estimated rainfall from the reflectivity of Kwangduck Mt. radar station with 100km effective range. G/R ratio is calculated by two methods: the first one uses a single G/R ratio for the entire effective range and the other two different G/R ratio for two regions that is formed by clustering analysis, and absolute relative error and root mean squared error are employed for evaluating the accuracy of radar rainfall estimation from two G/R ratios. As a result, the radar rainfall estimated by two different G/R ratio from clustering analysis is more accurate than that by a single G/R ratio for the entire range.