• 제목/요약/키워드: C-flux

검색결과 1,785건 처리시간 0.028초

The effect of Fullerene (C60) nanoparticles on the surface of PVDF composite membrane

  • Kim, Kyung Hee;Lee, Ju Sung;Hong, Hyun Pyo;Han, Jun Young;Park, Jin-Won;Min, ByoungRyul
    • Membrane and Water Treatment
    • /
    • 제6권5호
    • /
    • pp.423-437
    • /
    • 2015
  • Polyvinylidene fluoride/fullerene nanoparticle (PVDF/$C_{60}$) composite microfiltration (MF) membranes were fabricated by a non-solvent induced phase separation (NIPS) using N, N-dimethylacetamide (DMAc) as solvent and deionized water (DI) as coagulation solution. Polyvinylpyrrolidone (PVP) was added to the casting solution to form membrane pores. $C_{60}$ was added in increments of 0.2% from 0.0% to 1.0% to produce six different membrane types: one pristine PVDF membrane type with no $C_{60}$ added as control, and five composite membrane types with varying $C_{60}$ concentrations of 0.2, 0.4, 0.6, 0.8 and 1.0%, respectively. The mechanical strength, morphology, pore size and distribution, hydrophilicity, surface property, permeation performance, and fouling resistance of the six membranes types were characterized using respective analytical methods. The results indicate that membranes containing $C_{60}$ have higher surface porosity and pore density than the pristine membrane. The presence of numerous pores on the membrane caused weaker mechanical strength, but the water flux of the composite membranes increased in spite of their smaller size. Initial flux and surface roughness reached the maximum point among the composite membranes when the $C_{60}$ concentration was 0.6 wt.%.

만액식 증발기용 성형가공관의 풀비등 성능 (Pool Boiling Performance of Enhanced Tubes for a Flooded Evaporator)

  • 김내현;김태형;박운진
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.124-131
    • /
    • 2000
  • In this study, pool boiling performance of Turbo/B-type metal-formed tubes was investigated. Tubes with three different cavity gap width(0.04 mm, 0.07 mm, 0.1 mm) were manufactured and tested using R-11, R-123 and R-134a. Tests were conducted at two different saturation temperatures $4.4^{\circ}C$ and $26.7^{\circ}C.$ Heat flux was varied from 10 kW/m2 to 50 kW/m2. It was found that optimum gap width varied for different refrigerants. For low-pressure refrigerants such as R-11 or R-123, optimum gap width was 0.07 mm. For high-pressure refrigerant R-134a, however, the optimum value was 0.1 mm. Compared with the heat transfer performance of the smooth tube, the metal-formed tubes enhanced the heat transfer coefficients significantly - 6.5 times for R-11, 6.0 times for R-123 and 5.0 times for R-134a (at $4.4^{\circ}C$ saturation temperature and 40 kW/m2 heat flux), which are comparable with the performance of foreign products. The heat transfer coefficients of R-134a were larger than those of R-11 or R-123, and they increased as the saturation temperature increased.

복사장 내에서 충돌면의 표면조도가 단일액적 증발냉각에 미치는 영향 (Effects of Surface Roughness on Evaporation Cooling of Single Water Droplet in Radiative Fields)

  • 유갑종;박철우;장충선
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.467-474
    • /
    • 2004
  • This paper presents the results of an experimental investigation for the effect of radiant heat on the evaporation cooling of water droplet in the process of fire extinguishing. The experiments are mainly focused on the surface temperature, the surface roughness and the droplet diameter. The range of surface temperature is T$_{s}$ =80-14$0^{\circ}C$, surface roughness is R$_{a}$=0.08-0.64 ${\mu}{\textrm}{m}$ and the droplet diameter is $\Phi$=3.0 mm in the radiation. The results show that the evaporation time is shorter for the larger surface roughness and the volume of droplet increased when the surface roughness is 0.64 ${\mu}{\textrm}{m}$ at the surface temperature 127$^{\circ}C$. When the surface roughness is 0.64 ${\mu}{\textrm}{m}$, the heat flux is larger than the surface roughness is 0.08 ${\mu}{\textrm}{m}$ at the surface temperature 81$^{\circ}C$.>.>.

증발기의 압력강하에 대한 상대습도의 영향 (Effects of Relative Humidity on the Evaporator Pressure Drop)

  • 김창덕;강신형;박일환;이진호
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.

A Single-Flux-Quantum Shift Register based on High-T$_c$ Superconducting Step-edge Josephson Junctions

  • Sung, G.Y.;Choi, C.H.;Suh, J.D.;Han, S.K.;Kang, K.Y.;Hwang, J.S.;Yoon, S.G.;Jung, K.R.;Lee, Y.H.;Kang, J.H.;Kim, Y.H.;Hahn, T.S.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.133-133
    • /
    • 1999
  • We have fabricated and tested a simple circuit of the rapid single-flux-quantum(RSFQ) four-stage shift register using a single layer high-T$_c$ superconducting (HTS) YBa$_2Cu_3O_{7-x}$ (YBCO) thin film structure with 9 step-edge Josephson junctions. The circuit includes two read superconducting quantum interference devices(SQUID) and four stages. To establish a robust HTS RSFQ device fabrication process, we have focussed the reproducible process of sharp and straight step-edge formation as well as the ratio of film thickness to step height t/h. The spread of step-edge junction parameters was measured from each13 junctions with t/h=l/3, l/2, and 2/3 at various temperatures. We have demonstrated the simplified operation of the shift register at 65 K..

  • PDF

Flux 첨가에 의한 Anorthite 합성에 관한 연구 (The Synthesis of Anorthite by Addition of Flux)

  • 안영필;최석홍;이광
    • 한국세라믹학회지
    • /
    • 제16권2호
    • /
    • pp.83-88
    • /
    • 1979
  • The Anorthite is useful compound for some ceramic industries but it is difficult to produce Anorthite because of its high melting point (1553$^{\circ}C$) and narrow firing range. On this study, glass frit was added to Anorthite batch composition to widen firing range and lower melting point. After mixing a glass frit $(Na_2O-CaO-6SiO_2)$ with Anorthite, it was melted and quenched. Ratio of Anorthite vs. glass frit was 9 : 1, 8.5 : 1.5, 8 : 2, 7.5 : 2.5, 7 : 3. In those batch composition added amount of $No_2O$ were between 1.3wt.% and 3.9wt.%. To find the thermal change of the quenched, D.T.A. was surveyed. The quenched were fired at various vitrification temperature and detected by X-Raydiffraction analysis. With addition of glass frit, firing range and vitrification temperature of Anorthite was 100~15$0^{\circ}C$ and 1050~115$0^{\circ}C$ respectively. Optimum amount of glass frit was 20wt.% for the upper mentioned.

  • PDF

내/외재적 유한요소법을 이용한 최대추력노즐의 설계해석 (Implicit/Explicit Finite Element Method for Euler Flows Inside the Optimum Nozzle)

  • 윤웅섭;고현
    • 한국전산유체공학회지
    • /
    • 제2권1호
    • /
    • pp.66-72
    • /
    • 1997
  • Optimum nozzle design exploiting the method of characteristic(M.O.C) has been in application as an efficient design methodology targeting a less weighted and short expansion nozzle. This paper treats the optimum nozzle design and the analysis of the inviscid compressible flow inside. Based on traditional Rao's method, the optimum nozzle design is coded with minor modifications for the identification of the control surface across which the mass flux should be conserved. Internal flow field is simulated numerically by M.O.C and implicit/explicit Taylor-Galerkin finite element method(F.E.M) with the aid of adaptive remeshing to capture the shock wave, hence improve the accuracy. Designed and calculated flow fields due to the separate analyses show that the mass flux predicted by optimum nozzle design with M.O.C is not conserved across the control surface and the sonic line should be located upstream of the nozzle throat. Rao's optimum nozzle design methodology exaggerates the momentum thrust and tends to overemphasize the engine performance loss.

  • PDF

Construction of a 40-channel SQUID System and Its Application to Neuromagnetic Measurements

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Park, Y.K.;Park, J.C.;Lee, D.H.;Ahn, C.B.
    • Progress in Superconductivity
    • /
    • 제2권1호
    • /
    • pp.20-26
    • /
    • 2000
  • A 40-channel superconducting quantum interference device (SQUID) system was constructed for measuring neuromagnetic fields. Main features of the system are the use of double relaxation oscillation SQUIDs (DROSs), and planar gradiometers measuring magnetic field components tangential to the head surface. The DROSs with high flux-to-voltage transfers enabled direct readout of the SQUID output by room-temperature dc preamplifiers and simple flux-locked loop circuits could be used for SQUID operation. The pickup coil is an integrated first-order planar gradiometer with a baseline of 40 mm. Average noise level of the 40 channels is around 1.2 $fT/cm/{\surd}Hz$ at 100 Hz, corresponding to a field noise of 5 $fT/{\surd}Hz$, operated inside a magnetically shielded room. The SQUID insert was designed to have low thermal load, minimizing the loss of liquid helium. The constructed system was applied to measure auditory-evoked neuromagnetic fields.

  • PDF

Effect of $N_2$-backflushing Time in Carbon Ceramic UF & MF System for Paper Wastewater Treatment

  • Park, Jin-Yong
    • Korean Membrane Journal
    • /
    • 제7권1호
    • /
    • pp.34-41
    • /
    • 2005
  • The wastewater discharged from a paper plant was filtrated by 3 kinds of tubular carbon ceramic UF and MF membranes with $N_2$-backflushing. The filtration time (FT) was fixed at 8 min or 16 min, and $N_2$-backflushing time (BT) was changed in 0${\~}$60 sec. The optimal condition was discussed in the viewpoints of total permeate volume ($V_T$), dimensionless permeate flux (J/Jo) and resistance of membrane fouling ($R_f$). In the viewpoints of $V_T$, J/Jo and $R_f$, the optimal $N_2$-BT was 40 sec at both FT for M9 (MWCO: 300,000 Daltons) and C005 ($0.05{\mu}m$) membranes. However, for C010 ($0.1{\mu}m$) it was 10 sec at FT=8 min, and 20 sec at FT=16 min in the viewpoints of J/Jo and $R_f$, and 5 sec at both FT in the viewpoints of $V_T$. It means that the short $N_2$-BT could reduce the membrane fouling and recover the permeate flux sufficiently for MF membrane having a large pore size as C010. Average rejection rates of pollutants were higher than $99.0\%$ for turbidity and $22.8{\~}59.6\%$ for $COD_{cr}$, but rejection rates of total dissolved solid (TDS) were lower than $8.9\%$. Therefore, the low turbidity water purified in our system could be reused for paper process.

EGCG/바닐린 코팅 RO분리막의 표면 특성과 미생물막 억제능 (Surface characterization and evaluation of biofouling inhibition of reverse osmosis membranes coated with Epigallocatechin gallate(EGCG)/vanillin)

  • 정재현;김영진;남해욱;김윤중;이은수;이윤일;권지향
    • 상하수도학회지
    • /
    • 제28권6호
    • /
    • pp.713-723
    • /
    • 2014
  • Biofouling in brackish water reverse osmosis (RO) membranes still needs extensive research to understand cause and mechanism and to obtain methods for reduction of its impact on RO applications. Natural compounds with biofilm formation inhibitory properties are being investigated. Two compounds, vanillin and Epigallocatechin gallate (EGCG), were selected due to their great potential on biofilm formation inhibition. Vanillin shows inhibition on quorum sensing mechanisms of biofilm formation. EGCG has potential to inactivate microbial activity. The two compounds were incorporated in typical polyamide reverse osmosis membranes and evaluated on flux behaviours and biofilm formation potential. The surface properties of membrane coated with vanillin were changed tremendously compared to those with EGCG. As a result, the flux was reduced substantially. The biofilm formation seems hindered with EGCG coated membranes compared to the virgin membranes. More research is needed to optimize coating methods applicable to RO membranes and to enhance biofouling reduction.