• Title/Summary/Keyword: C-flux

Search Result 1,782, Processing Time 0.029 seconds

Experimental Study on Effects of PAG Oil for $CO_2$ Evaporation Heat Transfer (PAG 오일이 $CO_2$ 증발열전달에 미치는 영향에 관한 실험적 연구)

  • Lee, Sang-Jae;Kim, Dae-Hoon;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.357-363
    • /
    • 2008
  • In order to investigate $CO_2$ heat transfer coefficient and pressure drop by PAG oil concentration during $CO_2$ evaporation, the experiment on evaporation heat transfer characteristics in a horizontal micro-fin tube was performed. The experimental apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiment was conducted for various mass fluxes($400{\sim}1200\;kg/m^2s$), heat fluxes($10{\sim}30\;kW/m^2$) and saturation temperatures ($-5{\sim}5^{\circ}C$), and PAG oil concentration($0{\sim}5\;wt%$). The variation of the heat transfer coefficient was different in accordance with the oil concentration. With the increase of the oil concentration, the evaporation heat transfer coefficient decreased and the delay of dryout by oil addition was found. Pressure drop increased with the increase of the oil concentration and heat flux, and the decrease of saturation temperature.

Pool Boiling Heat Transfer Coefficient of HFC32/HFC152a on a Plain Surface (평판 표면에서 HFC32/HFC152a 혼합냉매의 풀 비등 열전달계수)

  • Kang, Dong-Gyu;Lee, Yohan;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.484-492
    • /
    • 2013
  • Nucleate pool boiling heat transfer coefficients (HTCs) are measured with HFC32/HFC152a mixture at several compositions. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a horizontal plain square surface of $9.53{\times}9.53$ mm, with heat fluxes of 10 $kW/m^2$ to 100 $kW/m^2$ with an interval of 10 $kW/m^2$, in the increasing order of heat flux. Test results show that the HTCs of these mixtures are up to 45% lower than those of the ideal HTCs calculated by a linear mixing rule with pure fluids' HTCs, due to the mass transfer resistance associated with non-azeotropic refrigerant mixtures. Pool boiling data show the deduction in HTCs with an increase in GTD of the mixture. The present mixture data agree well with five well known correlations, within 20% deviation.

Pool Boiling Heat Transfer Correlation for Mixture Refrigerants (혼합냉매의 풀비등 열전달 상관식)

  • 고영환;김종곤;박진석;정동수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.122-133
    • /
    • 2001
  • Pool boiling heat transfer coefficients(HTCs) of HFC32/HFC134a, HFC125/HFC134a, HFC32/HFC125 and HFC32/HFC125/HFC134a were measured on a horizontal smooth tube. The experimental apparatus was specially designed to simulate the real heat transfer tube with the use of the secondary fluid of water. Data were taken in the order of decreasing heat flux starting at 80kW/$m^2\; and\; ending\; at\; 5kW/m^2$ in the pool temperature at $7^{\circ}C$. Test results showed that HTCs of these mixtures were 11~38% lower than those of ideal HTCs calculated by a linear mixing rule with pure fluids、 HTCs. Experimental data were compared with Stephan & Korner, Thome, Schlunder, Thome & Shakir、s correlations only to find that those correlations were not satisfactory for all fluids. Hence, a new correlation based on the present data was proposed which could be applied even to the ternary mixture. The correlation predicts the degradation of HTCs of mixtures well, showing a mean deviation of less than 15% for all the mixture data.

  • PDF

Numerical Investigation of Thermal Characteristics and Geometrical Optimization in circular tubes with micro fins (원형 단면관 내 미세 휜의 형상 변화에 따른 열.유동 특성 및 최적 형상 개발에 관한 수치 해석)

  • Han, Dong-Hyouck;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1113-1118
    • /
    • 2006
  • A numerical investigation of single phase heat and flow characteristics in circular tubes with a single set of spiral micro fins was performed with varying geometrical parameters like fin height, spiral angle, and number of fins. The properties of $40^{\circ}C$ water was used as a working fluid to simulate a condenser and the RNG $k-{\epsilon}$ turbulence model was adopted. Calculation results were obtained in fully developed turbulent flow with constant surface heat flux boundary condition. Relative terms were introduced to investigate the substitution effect of conventional smooth tubes. The dimensionless terms were the heat transfer enhancement factor, the pressure drop penalty factor, and the efficiency index. Additionally, a numerical optimization was carried out to maximize thermal performance with the concept of the robust design. A statistical analysis showed that fin height interacts with number of fins and spiral angle.

  • PDF

Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum

  • Park, Eunhwi;Kim, Hye-Jin;Seo, Seung-Yeul;Lee, Han-Na;Choi, Si-Sun;Lee, Sang Joung;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1305-1310
    • /
    • 2021
  • Shikimate is a key high-demand metabolite for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu). Microbial-based strategies for shikimate production have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. In this study, a microbial cell factory using Corynebacterium glutamicum was designed to overproduce shikimate in a fed-batch culture system. First, the shikimate kinase gene (aroK) responsible for converting shikimate to the next step was disrupted to facilitate the accumulation of shikimate. Several genes encoding the shikimate bypass route, such as dehydroshikimate dehydratase (QsuB), pyruvate kinase (Pyk1), and quinate/shikimate dehydrogenase (QsuD), were disrupted sequentially. An artificial operon containing several shikimate pathway genes, including aroE, aroB, aroF, and aroG were overexpressed to maximize the glucose uptake and intermediate flux. The rationally designed shikimate-overproducing C. glutamicum strain grown in an optimized medium produced approximately 37.3 g/l of shikimate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for the microbial-based production of shikimate will play a key role in complementing traditional plant-derived shikimate production processes.

Analysis of Thermal Characteristics of the Electrical Socket-Outlets by Overcurrent (과전류에 의한 전기콘센트의 열적특성 분석)

  • Kim, Doo Hyun;Kim, Sung Chul;Kim, Kyung Chun
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.8-14
    • /
    • 2019
  • Many electrical socket-outlet fire accidents take place not only in homes but in the offices each year. The causes are mostly faulty constructions, managerial problems and carelessness. Construction and managerial flaws can be resolved by regular or special inspections, but carelessness is not solvable through inspections. Such carelessness can be related to the consumption capacity of electrical socket-outlets presently, the rated current of electrical socket-outlets is based on 16A. However, even at 16A, the heat generated in the insulator of an electrical socket-outlet varies due to such factors as part damage and environmental conditions of use. To explore this situation, the study conducted an experiment to analyze thermal relationship by applying 10A, 20A, and 30A currents. To secure reliability, the study employed thermal analysis simulation and compared the thermal relationship in the same current value. The experimental and simulation values were found to be similar and therefore, diverse current values were replaced with the simulation. At 30A, the temperature was found to rise to at least $169.9^{\circ}C$ which had worked as a sufficient amount of energy to bring the insulation aging of insulator.

Application of Deep Learning to Solar Data: 1. Overview

  • Moon, Yong-Jae;Park, Eunsu;Kim, Taeyoung;Lee, Harim;Shin, Gyungin;Kim, Kimoon;Shin, Seulki;Yi, Kangwoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2019
  • Multi-wavelength observations become very popular in astronomy. Even though there are some correlations among different sensor images, it is not easy to translate from one to the other one. In this study, we apply a deep learning method for image-to-image translation, based on conditional generative adversarial networks (cGANs), to solar images. To examine the validity of the method for scientific data, we consider several different types of pairs: (1) Generation of SDO/EUV images from SDO/HMI magnetograms, (2) Generation of backside magnetograms from STEREO/EUVI images, (3) Generation of EUV & X-ray images from Carrington sunspot drawing, and (4) Generation of solar magnetograms from Ca II images. It is very impressive that AI-generated ones are quite consistent with actual ones. In addition, we apply the convolution neural network to the forecast of solar flares and find that our method is better than the conventional method. Our study also shows that the forecast of solar proton flux profiles using Long and Short Term Memory method is better than the autoregressive method. We will discuss several applications of these methodologies for scientific research.

  • PDF

Effects of Mn and Heat-input on the Mechanical Properties of EGW Welds (일렉트로 가스 용접부의 기계적 성질에 미치는 Mn 및 입열량의 영향)

  • Kim, Nam In;Jeong, Sang Hoon;Lee, Jeong Soo;Kang, Sung Won;Kim, Myung Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.195-201
    • /
    • 2009
  • This paper is concerned with effects of Mn and heat-input on the mechanical properties of EGW welds. Four different kinds of welding consumables were fabricated by varying Mn contents such as 1.3, 1.5, 1.7, 2.0%Mn and each consumable was welded for EGW on four heat-input conditions between 190 and 340 KJ/Cm. Mn contents were decreased as heat-input increases and alloy elements (C, Si, Ti, B, Al) to deoxidize easily also revealed similar tendency to Mn. Their microstructure, Charpy impact property and strength were investigated, and it is found that Charpy impact property and strength exhibit a strong dependence on change of microstructure by Mn contents and heat-input. The increase of Mn contents or the decrease of heat-input made the microstructure fine and increase volume fraction of acicular ferrite, thereby leading to the great improvement of Charpy impact property and strength. In case of single EGW, optimum Mn contents are over 1.7% for the toughness and strength.

X-RAY PROPERTIES OF THE PULSAR PSR J0205+6449 IN 3C 58

  • Kim, Minjun;An, Hongjun
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • We report X-ray timing and spectral properties of the pulsar PSR J0205+6449 measured using NuSTAR and Chandra observatories. We measure the pulsar's rotation frequency ν = 15.20102357(9) s-1 and its derivative $\dot{\nu}=-4.5(1){\times}10^{-11}\;s^{-2}$ during the observation period, and model the 2-30 keV on-pulse spectrum of the pulsar with a power law having a photon index Γpsr = 1.07 ± 0.16 and a 2-30 keV flux F2-30 keV = 7.3±0.6 × 10-13 erg cm-2 s-1. The Chandra 0.5-10 keV data are analyzed for an investigation of the pulsar's thermal emission properties. We use thermal and non-thermal emission models to fit the Chandra spectra and infer the surface temperature T∞ and luminosity Lth of the neutron star to be T∞ = 0.5 - 0.8 MK and Lth = 1 - 5 × 1032 erg s-1. This agrees with previous results which indicated that PSR J0205+6449 has a low surface temperature and luminosity for its age of 800-5600 yrs.

Cement/PVDF hollow-fiber hybrid basement membrane: Preparation, microstructure, and separation application

  • Yabin, Zhang;Xiongfei, Du;Taotao, Zhao
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.291-301
    • /
    • 2022
  • In this study, cement/PVDF hollow-fiber hybrid membranes were prepared via a mixed process of diffusion-induced phase separation and hydration. The presence of X-ray diffraction peaks of Ca(OH)2, an AFt phase, an AFm phase, and C-S-H phase confirmed the hydration reaction. Good hydrophilicity was obtained. The cross-sectional and surface morphologies of the hybrid membranes showed that an asymmetric pore structure was formed. Hydration products comprising parallel plates of Ca(OH)2, fibrous ettringite AFt, and granulated particles AFm were obtained gradually. For the hybrid membranes cured for different time, the pore-size distribution was similar but the porosity decreased because of blocking of the hydration products. In addition, the water flux decreased with hydration time, and carbon retention was 90% after 5 h of rejection treatment. Almost all the Zn2+ ions were adsorbed by the hybrid membrane. The above results proved that the obtained membrane could be alternative as basement membrane for separation application.