• Title/Summary/Keyword: C-fiber

Search Result 3,362, Processing Time 0.033 seconds

Properties of Silicon Carbide-Carbon Fiber Composites Prepared by Infiltrating Porous Carbon Fiber Composites with Liquid Silicon

  • Lee, Jae-Chun;Park, Min-Jin;Shin, Kyung-Sook;Lee, Jun-Seok;Kim, Byung-Gyun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.229-234
    • /
    • 1997
  • Silicon carbide-carbon fiber composites have been prepared by partially Infiltrating porous carbon fiber composites with liquid silicon at a reaction temperature of $1670^{\circ}C$. Reaction between molten silicon and the fiber preform yielded silicon carbide-carbon fiber composites composed of aggregates of loosely bonded SiC crystallites of about 10$\mu\textrm{m}$ in size and preserved the appearance of a fiber. In addition, the SiC/C fiber composites had carbon fibers coated with a dense layer consisted of SiC particles of sizes smaller than 1$\mu\textrm{m}$. The physical and mechanical properties of SiC/C fiber composites were discussed in terms of infiltrated pore volume fraction of carbon preform occupied by liquid silicon at the beginning of reaction. Lower bending strength of the SiC/C fiber composites which had a heterogeneous structure in nature, was attributed to the disruption of geometric configuration of the original carbon fiber preform and the formation of the fibrous aggregates of the loosely bonded coarse SiC particles produced by solution-precipitation mechanism.

  • PDF

Conversion Process of Amorphous Si-Al-C-O Fiber into Nearly Stoichiometric SiC Polycrystalline Fiber

  • Usukawa, Ryutaro;Oda, Hiroshi;Ishikawa, Toshihiro
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.610-614
    • /
    • 2016
  • Tyranno SA (SiC-polycrystalline fiber, Ube Industries Ltd.) shows excellent heat-resistance up to $2000^{\circ}C$ with relatively high mechanical strength. This fiber is produced by the conversion process from a raw material (amorphous Si-Al-C-O fiber) into SiC-polycrystalline fiber at very high temperatures over $1500^{\circ}C$ in argon. In this conversion process, the degradation reaction of the amorphous Si-Al-C-O fiber accompanied by a release of CO gas for obtaining a stoichiometric composition and the subsequent sintering of the degraded fiber proceed. Furthermore, vaporization of gaseous SiO, phase transformation and active diffusion of the components of the Si-Al-C-O fiber competitively occur. Of these changes, vaporization of the gaseous SiO during the conversion process results in an abnormal SiC-grain growth and also leads to the non-stoichiometric composition. However, using a modified Si-Al-C-O fiber with an oxygen-rich surface, vaporization of the gaseous SiO was effectively prevented, and then consequently a nearly stoichiometric SiC composition could be obtained.

Structural Control Aiming for High-performance SiC Polycrystalline Fiber

  • Ishikawa, Toshihiro;Oda, Hiroshi
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.615-621
    • /
    • 2016
  • SiC-polycrystalline fiber (Tyranno SA, Ube Industries, Ltd.) shows very high heat-resistance and excellent mechanical properties up to very high temperatures. However, further increase in the strength is required. Up to now, we have already clarified the relationship between the strength and the defect-size of the SiC-polycrystalline fiber. The defects are formed during the conversion process from the raw material (amorphous Si-Al-C-O fiber) into SiC-polycrystalline fiber. In this conversion process, a degradation of the Si-Al-C-O fiber and a subsequent sintering of the degraded fiber proceed as well, accompanied by a release of CO gas and compositional changes, to obtain the dense SiC-polycrystalline fiber. Since these changes proceed in each filament, the strict control should be needed to minimize residual defects on the surface and in the inside of each filament for achieving the higher strength. In this paper, the controlling factors of the fiber strength and the fine structure will appear.

Heating Behavior of Silicon Carbide Fiber Mat under Microwave

  • Khishigbayar, Khos-Erdene;Seo, Jung-Min;Cho, Kwang-Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.707-711
    • /
    • 2016
  • A small diameter of SiC fiber mat can produce much higher heat under microwave irradiation than the other types of SiC materials. Fabrication of high strength SiC fiber consists of iodine vapor curing on polycarbosilane precursor and heat treatment process. The curing stage of polycarbosilane fiber was maintained at $150-200^{\circ}C$ in a vacuum condition under the iodine vapor to fabricate a high thermal radiation SiC fiber. The structure and morphology of the fibers were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). In this study, the thermal properties of SiC fiber mats under microwave have been analyzed with an IR thermal camera and its image analyzer. The prepared SiC fiber mats radiated high temperature with extremely high heating rate up to $1100^{\circ}C$ in 30 seconds. The fabricated SiC fiber mats were not oxidized after the heat radiation process under the microwave irradiation.

Fabrication of SiC Fiber Reinforced Porous Reaction Bonded SiC Composite and Its Mechanical Properties (SiC Fiber 강화 다공질 반응 소결 탄화규소 Composite의 제조 및 기계적 특성)

  • Han, Jae-Ho;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.509-514
    • /
    • 2006
  • In this study, chopped Hi-Nicalon SiC fiber Reinforced Porous Reaction Bonded SiC (RBSC) composites and it fabrication process were developed by using Si melt infiltration process. The porosity and average pore size in fabricated chopped SiC fiber reinforced porous RBSC composites were in the range of $30{\sim}40%$ and $40-90{\mu}m$, which mainly determined by the SiC powder size used as starting material and amount of residual Si in porous composites. The maximum flexural strength of chopped SiC fiber reinforced porous RBSC composite was as high as 80 MPa. The delayed fracture behavior was observed in chopped SiC fiber reinforced porous RBSC composites upon 3-point bending strength test.

Research of the Composite Spun Yarn Manufacturing Process using Silicon Carbide and Para Aramid Fiber (SiC/p-Aramid 복합방적사 제조기술 연구)

  • Kim, Booksung;Ryu, Huijun
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.309-316
    • /
    • 2021
  • Due to the rigid nature of the silicon carbide fiber(SiC), fiber damage occurs from the friction during the carding process. This damage not only lowers the spun yarn yield, but also lowers the heat resistance of the spun yarn, so that ultra-high heat resistant yarn cannot be manufactured. Therefore, in the carding process where the most friction between fiber and machine(wire, etc.) occurs, some factors were modified and tested, and as a result of measuring the change in physical properties, fiber damage decreased due to the wire angle or wire density, resulting in improved yield. The test method used to measure the yield of SiC fiber was the carbonization method, and the content of SiC fibers was calculated using the remaining amount after carbonization. Carbonization test was performed at air condition, 700℃, and for 2 hours. Analysis by SEM-EDX showed that the carbide was consistent with the composition of the SiC fiber.

Preparation of Activated Carbon Fiber from Chemically Modified Coal-tar Pitch

  • Lee, Dong-Jun;Yang, Gap-Seung;Ryu, S.K.;Kim, Y.J.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.10a
    • /
    • pp.117-123
    • /
    • 1996
  • Cabon fiber of general purpose was prepared from coal tar pitch modified with 10% benzoquinine(BQ) at 380C for 3 hours. Such a modified pitch raised the softening of the pitch from 85C to 271C at the yield of 40%. The modified pitch was spun smoothly at a rate of 480m/min into a fiber of 20um diameter. The fiber was stabilized stepwise at 236C (5C/min) and 312C (1C/min) for 3 hours each. Both carbonized and graphitized fibers exhibited tensile strength of 570MPa which appears large enough as a precursor for active carbon fiber. The activated carbon fiber prepared exhibited relatively high surface area of 2062m2/g at 76% burn-off and rather narrow distribution pore size of 20A.

  • PDF

Mechanical Properties of C-type Mesophase Pitch-based Carbon Fibers

  • Ryu, Seung-Kon;Rhee, Bo-Sung;Yang, Xiao Ping;Lu, Yafei
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.165-169
    • /
    • 2001
  • The C-type mesophase pitch-based carbon fiber (C-MPCF) was prepared throuch C-type spinnerette and compared the mechanical properties to those of round type mesophase pitch fiber (R-MPCF) and C-type isotropic pitch fiber (C-iPCF). The tensile strength and modulus of C-MPCF were about 18.6% and 35.7% higher than those of R-MPCF. The tensile strength of C-MPCF was 62% higher than that of C-iPCF of the same $8{\mu}m$ thickness because of more linear transverse texture, which could be easily converted to graphitic crystallinity during heat treatment. The torsional rigidity of C-MPCF was 2.37 times higher than that of R-MPCF. The electrical resistivity of C-MPCF was $8{\mu}{\Omega}{\cdot}m$. The C-iPCF shows far lower electrical resistivity than R-iPCF as well as the mesophase carbon fiber because of better alignment of texture to the fiber axis.

  • PDF

Preparation and Erosion Properties of Reaction-Bonded SiC Reinforced by Carbon Fiber (탄소섬유로 강화된 반응소결 SiC 제조 및 Erosion 특성)

  • 송진웅;임대순;김형욱
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.258-264
    • /
    • 1998
  • Three kinds of reation-bonded SiC that reaction-bonded SiC(RBSC), RBSC reinforced by carbon fiber and RBSC reinforced by activated carbon fiber were prepared for investigating the change of erosion properties. The characteristics of microstructures and the phases have been investigated by using scanning electron microscope and XRD analysis. The hardness test, toughness test and erosion test were camed out. In the cases with no carbon fiber, those kind of specimens had the highest result of hardness test and the lowest result of toughness test. With the increase of carbon fiber content, The hardness and the weight loss were decreased but the toughness was increased in the cases with carbon fiber In the cases with activated carbon fiber those specimens had the highest result of toughness test and the lowest result of hardness test with 30% contents of activated carbon fiber.

  • PDF

Preparation and Erosion Properties of Reaction-Bonded SiC Reinforced by Carbon Fiber (탄소섬유로 강화된 반응소결 SiC 제조 및 Erosion 특성)

  • 송진웅;임대순;김형욱
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.59-67
    • /
    • 1999
  • Three kinds of reation-bonded SiC that reaction-bonded SiC(RBSC), RBSC reinforced by carbon fiber and RBSC reinforced by activated carbon fiber were prepared for investigating the change of erosion properties. The characteristics of microstructures and the phases have been investigated by using scanning electron microscope and XRD analysis. The hardness test toughness test and erosion test was carried out. In the cases with no carbon fiber, those kind of specimens had the highest value of hardness and the lowest value of toughness. With the increase of carbon fiber content the hardness and the weight loss were decreased, but the toughness was increased in the cases with carbon fiber. In the cases with activated carbon fiber specimens had the highest value of toughness and the lowest value of hardness with 30% contents of activated carbon fiber.