• Title/Summary/Keyword: C-doped

Search Result 1,885, Processing Time 0.027 seconds

Microstructural Change of Doped-Alumina Membrane (도핑된 알루미나 여과막의 미세구조 변화)

  • 이진하;최성철;한경섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1040-1047
    • /
    • 1999
  • After alumina sol was prepared by Yoldas process supported membranes were fabricated by adding ce and Re solution and SiO2 sol into alumina sol. The particle size of alumina sol was 11 nm and it was monodispersed transparent and stable for long time. The pore size of un-doped membrane started to increase to about 7,5nm at 1000$^{\circ}C$ and it was grown to twice (about 15nm) at 1100$^{\circ}C$ However the pore size of doped alumina was uniform to 1100$^{\circ}C$. The effect of retardation of grain growth was superior in SiO2 addition to that of Ce and Ru Because SiO2 doped samples transformed to needed-like phase and densified at 1200$^{\circ}C$ their application in membranes was limited. Ce and Ru doped sample showed vermicular structure identical to the un-doped ones at 1200$^{\circ}C$ But the particle size was smaller than that of un-doped ones.

  • PDF

Fabrication of C2H2 Gas Sensors Based on Ag-Doped Hierarchical ZnO Nanostructures and Their Characteristics (Ag가 도핑된 계층적 ZnO 나노구조 기반 C2H2 가스센서의 제작과 그 특성)

  • Lee, Kwan-Woo;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.397-401
    • /
    • 2014
  • This paper describes the fabrication and characteristics of $C_2H_2$ gas sensor based on Ag-doped hierarchical ZnO nanostructures. In this work, a pure hierarchical ZnO structure was prepared using a simple hydrothermal method, and Ag nanoparticles doped the hierarchical ZnO structure were uniformly synthesized through photochemical route. The synthesized samples were characterized by SEM, TEM, EDS, XRD and PL spectra. Average size of prepared ZnO structures was around $2{\sim}3{\mu}m$ and showed highly uniform. The average size of Ag nanoparticles was 70 nm. The gas sensing properties of as-prepared products were investigated using resistivity-type gas sensors. 5 at% Ag-doped ZnO based sensors exhibited good performances for $C_2H_2$ gas in comparison with the un-doped one. The sensor based on Ag-doped hierarchical ZnO structures had linear response property from 5~1000 ppm of $C_2H_2$ concentration at working temperature of $200^{\circ}C$. The response values with 100 ppm $C_2H_2$ at $200^{\circ}C$ were 10% and 75% for pure and 5 at% Ag-doped hierarchical ZnO nanostructures, respectively. Moreover, the device showed excellent selectivity towards to $C_2H_2$ gas at optimal working temperature of $200^{\circ}C$.

A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

  • Choi, S.M.;Shin, G.M.;Joo, Y.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.15-20
    • /
    • 2013
  • We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) films with the same thickness of ~350 nm for a comparative purpose. The films were prepared on the $SrTiO_3$ (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density ($J_c$) and pinning force density ($F_p$). The anisotropic $J_{c,min}/J_{c,max}$ ratio in the field-angle dependence of $J_c$ at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic $J_c$ values of 9.0 and $2.9MA/cm^2$ with the maximum $F_p$ ($F_{p,max}$) values of 19 and $5GN/m^3$ at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller $BaZrO_3$ (BZO) nanoparticles (the average size ${\approx}28.4$ nm) than $YBa_2SnO_{5.5}$ (YBSO) nanoparticles (the average size ${\approx}45.0$ nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

Development and Oxidation Resistance of B-doped Silicide Coatings on Nb-based Alloy

  • Li, Xiaoxia;Zhou, Chungen
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.233-236
    • /
    • 2008
  • Halide-activated pack cementation was utilized to deposit B-doped silicide coating. The pack powders were consisted of $3Wt.c/oNH_4Cl$, 7Wt.c/oSi, $90Wt.c/oAl_2O_3+TiB_2$. B-doped silicide coating was consisted of two layers, an outer layer of $NbSi_2$ and an inner layer of $Nb_5Si_3$. Isothermal oxidation resistance of B-doped silicide coating was tested at $1250^{\circ}C$ in static air. B-doped silicide coating had excellent oxidation resistance, because continuous $SiO_2$ scale which serves as obstacle of oxygen diffusion was formed after oxidation.

Synthesis and Characterization of Fe Doped TiO2 Nanoparticles by a Sol-Gel and Hydrothermal Process

  • Kim, Hyun-Ju;Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.249-252
    • /
    • 2012
  • Fe doped $TiO_2$ nanoparticles were prepared under high temperature and pressure conditions by mixture of metal nitrate solution and $TiO_2$ sol. Fe doped $TiO_2$ particles were reacted in the temperature range of 170 to $200^{\circ}C$ for 6 h. The microstructure and phase of the synthesized Fe doped $TiO_2$ nanoparticles were studied by SEM (FE-SEM), TEM, and XRD. Thermal properties of the synthesized Fe doped $TiO_2$ nanoparticles were studied by TG-DTA analysis. TEM and X-ray diffraction pattern shows that the synthesized Fe doped $TiO_2$ nanoparticles were crystalline. The average size and distribution of the synthesized Fe doped $TiO_2$ nanoparticles were about 10 nm and narrow, respectively. The average size of the synthesized Fe doped $TiO_2$ nanoparticles increased as the reaction temperature increased. The overall reduction in weight of Fe doped $TiO_2$ nanoparticles was about 16% up to ${\sim}700^{\circ}C$; water of crystallization was dehydrated at $271^{\circ}C$. The transition of Fe doped $TiO_2$ nanoparticle phase from anatase to rutile occurred at almost $561^{\circ}C$. The amount of rutile phase of the synthesized Fe doped $TiO_2$ nanoparticles increased with decreasing Fe concentration. The effects of synthesis parameters, such as the concentration of the starting solution and the reaction temperature, are discussed.

Heteroatom-doped carbon nanostructures as non-precious cathode catalysts for PEMFC (이종 원자 도핑 탄소 나노재료를 이용한 PEMFC Cathode용 촉매 합성 및 평가)

  • Jo, G.Y.;Shanmugam, S.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.406-409
    • /
    • 2012
  • Recently, enormous research efforts have been focused on the development of non-precious catalysts to replace Pt for electrocatalytic oxygen reduction reaction (ORR), and to reduce the cost of proton exchange membrane fuel cells (PEMFCs). In recent years, heteroatom (N, B, and P) doped carbon nanostructures have been received enormous importance as a non-precious electrode materials for oxygen reduction. Doping of foreign atom into carbon is able to modify electronic properties of carbon materials. In this study, nitrogen and boron doped carbon nanostructures were synthesized by using a facile and cost-effective thermal annealing route and prepared nanostructures were used as a non-precious electrocatalysts for the ORR in alkaline electrolyte. The nitrogen doped carbon nanocapsules (NCNCs) exhibited higher activity than that of a commercial Pt/C catalyst, excellent stability and resistance to methanol oxidation. The boron-doped carbon nanostructure (BC) prepared at $900^{\circ}C$ showed higher ORR activity than BCs prepared lower temperature (800, $700^{\circ}C$). The heteroatom doped carbon nanomaterials could be promising candidates as a metal-free catalysts for ORR in the PEMFCs.

  • PDF

Characterization of Delta-Doped P-Type SiC Films (델타 도핑한 P형 SiC막의 평가)

  • Kim, Tae-Seong;Jeong, Woo-Seong;Nam, Hae-Kon
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.46-52
    • /
    • 1990
  • Novel a-Si solar cells with delta-doped(${\delta}x$-doped) P-layer have been fabricated to enhance the hole concentration of the P-layers. The ${\delta}-$doped P-layer consists of very thin B sheets of 0.1-0.5 atomic layers and undoped a-SiC multi-layers. B-layers were prepared by photo-CVD and pyrolysis technique. The structural, optical and electrical characteristics of the delta-doped P-layer films were evaluated by means of FTIR, AES and SIMS. As the results of this study, it was found that the ${\delta}$-doped P-layer showed much superior optical and electrical characteristics than those of conventional uniformly B-doped a-Si layers. 12.5% energy conversion efficiency was achieved for the Cell with ${\delta}$-doped P-layer.

  • PDF

Capacitive Humidity Sensors using lodine-doped Polyphenylacetylene Thin Films (요오드가 도우핑된 폴리페닐아세틸렌 박막을 이용한 정전용량형 습도센서)

  • Min, Nam-Ki;Jin, Joon-Hyung;Kim, Tae-Yoon;Hong, Suk-In
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.335-340
    • /
    • 2000
  • We report the results of a preliminary investigation on capacitive humidity sensors using iodine-doped polyphenylacetylene(PPA) thin films. PPA was prepared from phenylacetylene(PA), chemically doped with iodine, and characterized by DSC, $^1H$-NMR and FTIR spectra. The iodine-doped PPA sensors showed a sensitivity of 0.20pF/%RH, a linearity of 3.8%FS, a negligible hysteresis, and a low temperature coefficients of $0.043~0.067pF/^{\circ}C$ over a wide range of relative humidity. These results are expected to open up the possibility of iodine-doped PPA thin films as relative humidity sensors.

  • PDF

Effects of In-situ doping Concentration on the Characteristics of Porous 3C-SiC Thin Films (In-situ 도핑량이 다공성 3C-SiC 박막의 특성에 미치는 영향)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.487-490
    • /
    • 2010
  • This paper describes the elecrtical and optical characteristics of $N_2$ doped porous 3C-SiC films. Polycrystalline 3C-SiC thin films are anodized by $HF+C_2H_5OH$ solution with UV-LED exposure. The growth of in-situ doped 3C-SiC thin films on p-type Si (100) wafers is carried out by using APCVD (atmospheric pressure chemical vapor deposition) with a single-precursor of HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$. 0 ~ 40 sccm $N_2$ was used for doping. After the growth of doped 3C-SiC, porous 3C-SiC is formed by anodization with $7.1\;mA/cm^2$ current density for anodization time of 60 sec. The average pore diameter is about 30 nm, and etched area is increased with $N_2$ doping rate. These results are attributed to the decrease of crystallinity by $N_2$ doping. Mobility is dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC are 2.5 eV and 2.7 eV, respectively.

Characterization of Monocrystalline $\beta-SiC$ Thin Film Grown by Chemical Vapor Deposition

  • Kim H. J.;Davis R. F.
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 1986.12a
    • /
    • pp.287-304
    • /
    • 1986
  • High quality monocrystalline $\beta$-SiC thin films were grown via two-step process of conversion of the Si(100) surface by reaction with $C_2H_4$ and the subsequent chemical vapor deposition (CVD) at $1360^{\circ}C$ and 1 atm total pressure. Four dopants, B and Al and p-type, and N and P for n-type, were also incorporated into monocrystalline $\beta$-SiC thin films during the CVD growth process. IR and Raman spectroscopies were used to evaluate the quality of the undoped $\beta$-SiC thin films and to investigate the effects of dopants on the structure of the doped $\beta$-SiC thin films. The changes in the shape of IR and Raman spectra of the doped thin films due to dopants were observed. But the XTEM micrographs except for the B-doped and annealed films showed the same density and distribution of stacking faults and dislocations as was seen in the undoped samples, The IR and Raman spectra of the B-doped and annealed films showed the broad and weak bands and one extra peak at the 850 $cm^{-1}$ respectively. The SAD pattern and XTEM micrograph of the B-doped and annealed film provided the evidence for twinning.

  • PDF