Characterization of Monocrystalline $\beta-SiC$ Thin Film Grown by Chemical Vapor Deposition

  • Kim H. J. (Dept. of Inorganic Materials Engineering Seoul National University) ;
  • Davis R. F. (Dept. of Materials Science and Engineering North Carolina State University)
  • Published : 1986.12.01


High quality monocrystalline $\beta$-SiC thin films were grown via two-step process of conversion of the Si(100) surface by reaction with $C_2H_4$ and the subsequent chemical vapor deposition (CVD) at $1360^{\circ}C$ and 1 atm total pressure. Four dopants, B and Al and p-type, and N and P for n-type, were also incorporated into monocrystalline $\beta$-SiC thin films during the CVD growth process. IR and Raman spectroscopies were used to evaluate the quality of the undoped $\beta$-SiC thin films and to investigate the effects of dopants on the structure of the doped $\beta$-SiC thin films. The changes in the shape of IR and Raman spectra of the doped thin films due to dopants were observed. But the XTEM micrographs except for the B-doped and annealed films showed the same density and distribution of stacking faults and dislocations as was seen in the undoped samples, The IR and Raman spectra of the B-doped and annealed films showed the broad and weak bands and one extra peak at the 850 $cm^{-1}$ respectively. The SAD pattern and XTEM micrograph of the B-doped and annealed film provided the evidence for twinning.