• Title/Summary/Keyword: C-axis growth

Search Result 295, Processing Time 0.03 seconds

Promoter -202 A/C Polymorphism of Insulin-like Growth Factor Binding Protein-3 Gene and Non-small Cell Lung Cancer Risk (인슐린양 성장 인자 결합 단백-3 유전자 -202 좌위의 다형성에 따른 비소세포폐암의 위험도)

  • Moon, Jin Wook;Chang, Yoon Soo;Han, Chang Hoon;Kang, Shin Myung;Park, Moo Suk;Byun, Min Kwang;Chung, Wou Young;Park, Jae Jun;Yoo, Kyeong Nam;Shin, Ju Hye;Kim, Young Sam;Chang, Joon;Kim, Sung Kyu;Kim, Hee Jung;Kim, Se Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.4
    • /
    • pp.359-366
    • /
    • 2005
  • Background : IGFBP-3 inhibits the mitogenic and anti-apoptotic activity of IGF by blocking the binding of IGF to its receptor. However, under certain circumstances, IGFBP-3 can enhance the activity of IGF by protecting IGF from its degradation. More than half of the interindividual variations in IGFBP-3 levels are known to be genetically determined by the polymorphism at -202 locus of IGFBP-3 gene. Method : We attempted to ascertain whether A-202C polymorphic variation of IGFBP-3 gene constitutes a risk factor for non-small cell lung cancer (NSCLC), using PCR-restriction fragment length polymorphism (RFLP). Our study included 104 NSCLC patients and 104 age-, gender-, and smoking status-matched control subjects. Result : In the 104 NSCLC subjects, the genotypic frequencies at the -202 site were as follows: AA = 67 (64.4%), AC = 35 (33.7%), and CC = 2 (1.9%). We did detect significant differences in the genotypic distribution between the NSCLC and the control subjects (p<0.05), and the NSCLC risk correlated significantly with AA genotype at the -202 locus (AA>AC>CC). Using CC genotype as a reference, the odds ratio (OR) for the subjects with AC genotype was 2.60 (95% CI: 0.89 - 8.60), and the OR associated with AA genotype was 5.89 (95% CI: 1.92 - 21.16). Conclusion : These results indicate that the dysregulation of IGF axis should now be considered as another important risk factor for NSCLC, and a potential target for novel antineoplastic therapies and/or preventative strategies in high-risk groups.

Effect of RF Power on Structural and Electrical Properties of Ga-Doped ZnO for Transparent Electrode of Thin Film Solar Cells (박막 태양전지용 투명 전극을 위한 Ga 도핑된 ZnO의 RF 전력에 따른 구조 및 전기 특성 변화)

  • Son, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.202-206
    • /
    • 2011
  • We have investigated the structural and electrical properties of Ga-doped ZnO (GZO) thin films deposited by an RF magnetron sputtering at various RF powers from 50 to 90W. All the GZO thin films are grown as a hexagonal wurtzite phase with highly c-axis preferred parameters. The structural and electrical properties are strongly related to the RF power. The grain size increases as the RF power increases since the columnar growth of GZO thin film is enhanced at an elevated RF power. This result means that the crystallinity of GZO is improved as the RF power increases. The resistivity of GZO rapidly decreases as the RF power increases up to 70 W and saturates to 90W. In contrast, the electron concentration of GZO increases as the RF power increases up to 70 W and saturates to 90W. GZO thin film shows the lowest resistivity of $2.2{\times}10^{-4}{\Omega}cm$ and the highest electron concentration of $1.7{\times}10^{21}cm^{-3}$ at 90W. The mobility of GZO increases as the RF power increases since the grain boundary scattering decreases due to the reduced density of the grain boundary at a high RF power. The transmittance of GZO thin films in the visible range is above 90%. GZO is a feasible transparent electrode for application as a transparent electrode for thin film solar cells.

Enhanced Electrochemical Properties of NCA Cathode Materials for Lithium Ion Battery by Doping Effect (도핑효과에 따른 리튬이차전지용 NCA 양극활물질의 전기화학적 특성 향상)

  • Fan, Zhi Yu;Jin, n Mei;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.861-867
    • /
    • 2017
  • In order to improve the capacity and cycling stability of Ni-rich NCA cathode materials for lithium ion batteries, the boron and cobalt were doped in commercial $Li_{1.06}Ni_{0.91}Co_{0.08}Al_{0.01}O_2$ (NCA) powders. Commercial NCA particles are mixed composites such as secondary particles of about $5{\mu}m$ and $12{\mu}m$, and the particle size was decreased by doping boron and cobalt. The initial discharge capacities of the boron and cobalt doped NCA-B and NCA-Co were found to be 214 mAh/g and 200 mAh/g, respectively, which are higher values than that of the raw NCA cathode material. In particular, NCA-Co exhibits the best discharge capacity of 157 mAh/g after 20 cycles, which is probably due to the enhanced diffusion of lithium ion by crystal growth along with the c-axis direction.

Occurrence of Sword bean Scab Caused by Cladosporium cucumerinum in Korea

  • Kwon, Jin-Hyeuk;Kang, Soo-Woong;Park, Chang-Seuk
    • Mycobiology
    • /
    • v.28 no.1
    • /
    • pp.54-56
    • /
    • 2000
  • A black scab disease occurred on sword bean (Canavalia gladiata) in plastic film houses around Chinju area during the spring season of 1999. The disease started from flower bud, then moved to flower stalk, pod, petiole, cirrus, stem and leaves. The lesions started with small dark brown spots then were gradually expanded. Severely infected plants reached 37.4% of whole plant covered with scab. Numerous conidia were produced on the diseased flower disk, pod, floral axis, stem and leaves. Most of the conidia were appeared to be readily dispersed in the air, but the mycelia were not suggested causing of sooty mold by ectoparasitism. A fungus was isolated from the diseased stem, and inoculated to healthy plants to satisfy the Koch's postulates and proved the fungus was the causal agent of the disease. The isolated fungus grew on potato dextrose agar, forming greenish black to pale brown colonies. Conidia were ellipsoidal, fusiform or subspherical, mostly one-celled but occasionally septated. The conidia were $3.9{\sim}34.1{\times}2.7{\sim}5.1\;{\mu}m$ in size and formed in long branched chains on the erected conidiophores which were pale olivaceous brown and variable in length between $7.2{\sim}210.7\;{\mu}m$ in size. Ramoconidia were $7.6{\sim}29.2{\times}3.2{\sim}14.4\;{\mu}m$ in size. The fungus was identified as Cladosporium cucumerinum based on the above morphological characteristics. The optimum temperature for mycelial growth and conidial formation was about 15 to $25^{\circ}C$. Cladosporium scab of sword bean caused by the fungi has not been reported in Korea previously.

  • PDF

Properties Optimization for Perovskite Oxide Thin Films by Formation of Desired Microstructure

  • Liu, Xingzhao;Tao, Bowan;Wu, Chuangui;Zhang, Wanli;Li, Yanrong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.715-723
    • /
    • 2006
  • Perovskite oxide materials are very important for the electronics industry, because they exhibit promising properties. With an interest in the obvious applications, significant effort has been invested in the growth of highly crystalline epitaxial perovskite oxide thin films in our laboratory. And the desired structure of films was formed to achieve excellent properties. $Y_1Ba_2Cu_3O_{7-x}$ (YBCO) superconducting thin films were simultaneously deposited on both sides of 3 inch wafer by inverted cylindrical sputtering. Values of microwave surface resistance R$_2$ (75 K, 145 GHz, 0 T) smaller than 100 m$\Omega$ were reached over the whole area of YBCO thin films by pre-seeded a self-template layer. For implementation of voltage tunable high-quality varactor, A tri-layer structured SrTiO$_3$ (STO) thin films with different tetragonal distortion degree was prepared in order to simultaneously achieve a large relative capacitance change and a small dielectric loss. Highly a-axis textured $Ba_{0.65}Sr_{0.35}TiO_3$ (BST65/35) thin films was grown on Pt/Ti/SiO$_2$/Si substrate for monolithic bolometers by introducing $Ba_{0.65}Sr_{0.35}RuO_3$ (BSR65/35) thin films as buffer layer. With the buffer layer, the leakage current density of BST65/35 thin films were greatly reduced, and the pyroelectric coefficient of $7.6\times10_{-7}$ C $cm^{-2}$ $K^{-1}$ was achieved at 6 V/$\mu$m bias and room temperature.

Effect of Oxygen Mixture Ratio on the Properties of ZnO Thin-Films and n-ZnO/p-Si Heterojunction Diode Prepared by RF Sputtering (산소 혼합 비율에 따른 RF 스퍼터링 ZnO 박막과 n-ZnO/p-Si 이종접합 다이오드의 특성)

  • Gwon, Iksun;Kim, Danbi;Kim, Yewon;Yeon, Eungbum;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.456-462
    • /
    • 2019
  • ZnO thin-films are grown on a p-Si(111) substrate by RF sputtering. The effects of growth temperature and $O_2$ mixture ratio on the ZnO films are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and room-temperature photoluminescence (PL) measurements. All the grown ZnO thin films show a strong preferred orientation along the c-axis, with an intense ultraviolet emission centered at 377 nm. However, when $O_2$ is mixed with the sputtering gas, the half width at half maximum (FWHM) of the XRD peak increases and the deep-level defect-related emission PL band becomes pronounced. In addition, an n-ZnO/p-Si heterojunction diode is fabricated by photolithographic processes and characterized using its current-voltage (I-V) characteristic curve and photoresponsivity. The fabricated n-ZnO/p-Si heterojunction diode exhibits typical rectifying I-V characteristics, with turn-on voltage of about 1.1 V and ideality factor of 1.7. The ratio of current density at ${\pm}3V$ of the reverse and forward bias voltage is about $5.8{\times}10^3$, which demonstrates the switching performance of the fabricated diode. The photoresponse of the diode under illumination of chopped with 40 Hz white light source shows fast response time and recovery time of 0.5 msec and 0.4 msec, respectively.

A STUDY OF THE MECHANISM OF IMPROVING ACID RESISTANCE OF BOVINE TOOTH ENAMEL AFTER PULSED Nd-YAG LASER IRRADIATION (펄스형 Nd-YAG 레이저 조사에 의한 법랑질 내산성 증가 기전에 관한 연구)

  • Lee, Young-Soon;Shon, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.640-658
    • /
    • 1996
  • The purpose of this study was to examine the mechanism of improving acid resistance of Nd-YAG laser irradiated tooth enamel and determine the most effective energy density for improving acid resistance. The bovine tooth enamel were lased with a pulsed Nd-YAG laser. The energy densities of exposed laser beam were varied from 10 to $70\;J/cm^2$. To investigate the degree of improving acid resistance by irradiation, all the samples were submerged to demineralize in 0.5 N $HClO_4$ solution for 1 minute. After 1 minute, 0.05 % $LaCl_3$ was added to the solution for interrupting the demineralization reaction. The amounts of dissolved calcium and phosphate in the solution were measured by using an atomic absorption spectrophotometer and the UV/VIS spectrophotometer, respectively. To examine the mechanism of improving acid resistance, X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy were taken. The X-ray diffraction pattern of the samples were obtained in the $10^{\circ}{\sim}80^{\circ}2{\theta}$ range with $Cu-K{\alpha}$ radiation using M18HF(Mac Science Co.) with X-ray diffractometer operating at 40 KV and 300 mA. The infra-red spectra of the ground samples in 300 mg KBr pellets 10 mm diameter were obtained in the $4000cm^{-1}\;to\;400cm^{-1}$ range using JASCO 300E spectrophotometer. The scanning electron microscopy was carried out using JSM6400(JEOL Co.) with $500{\sim}2000$ times magnification. The results were as follow 1. The concentration of calcium dissolved from laser irradiated enamel with $50J/cm^2$ was significantly lesser than that of unlased control group (p<0.05) 2. From the result of the X-ray diffraction analysis, $\beta$-TCP, which increases acid solubility, was identified in lased enamel but the diffraction peaks of (002) and (004) became sharp with increasing energy density of laser irradiation. This means that the crystals in lased samples were grown through the c-axis and subsequently, the acid solubility of enamel decreased. 3. The a-axis parameter was slightly increased by laser irradiation, whereas the c-axis parameter was almost constant except for a little decrease at $50J/cm^2$. 4. In the infra-red spectra of lased enamels, phosphate bands ($600{\sim}500cm^{-1}$), B-carbonate bands (870, $1415{\sim}1455cm^{-1}$), and A-carbonate band ($1545cm^{-1}$) were observed. The amounts of phosphate bands and the B-carbonate bands were reduced, on the other hand, the amount of the A-carbonate band was increased by increase the energy density. 5. The SEM experiments reveal that the surface melting and recrystallization were appeared at $30J/cm^2$ and the cracks were observed at $70J/cm^2$. From above results, It may be suggested that the most effective energy density for improving acid resistance of tooth enamel with the irradiation of Nd-YAG laser was $50J/cm^2$. The mechanism of improving acid resistance were reduction of permeability due to surface melting and recrystallization of lased enamel and reduction of acid solubility of enamel due to decrease of carbonate content and growth of crystal.

  • PDF

Optical Properties of $ZnIn_2S_4/GaAs$ Epilayer Grown by Hot Wall Epitaxy method (Hot Wall Epitaxy (HWE)에 의한 성장된 $ZnIn_2S_4/GaAs$ 에피레이어의 광학적 특성)

  • Hong, Gwang-Jun;Lee, Gwan-Gyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.175-178
    • /
    • 2004
  • The stochiometric mixture of evaporating materials for the $ZnIn_2S_4$ single crystal thin film was prepared from horizontal furnace. To obtain the $ZnIn_2S_4$ single crystal thin film, $ZnIn_2S_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100) in the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$, respectively and the growth rate of the $ZnIn_2S_4$ sing1e crystal thin film was about $0.5\;{\mu}m/hr$. The crystalline structure of $ZnIn_2S_4$ single crystal thin film was investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of $ZnIn_2S_4$ single crystal thin film measured from Hall effect by van der Pauw method are $8.51{\times}10^{17}\;cm^{-3}$, $291\;cm^2/V{\cdot}s$ at $293_{\circ}\;K$, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the $ZnIn_2S_4$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}S_O$ and the crystal field splitting ${\Delta}Cr$ were 0.0148 eV and 0.1678 eV at $10_{\circ}\; K$, respectively. From the photoluminescence measurement of $ZnIn_2S_4$ single crystal thin film, we observed free excition $(E_X)$ typically observed only in high quality crystal and neutral donor bound exciton $(D^{o},X)$ having very strong peak intensity The full width at half maximum and binding energy of neutral donor bound excition were 9 meV and 26 meV, respectively, The activation energy of impurity measured by Haynes rule was 130 meV.

  • PDF

Biological Characteristics and Growth of the Korean Freshwater Rotifer, Brachionus calyciflorus at Various Temperatures (한국 담수산 윤층 Brachionus calyciflorus의 생물학적 특징과 온도별 성장)

  • 강언종;이배익;김응오
    • Journal of Aquaculture
    • /
    • v.10 no.4
    • /
    • pp.449-456
    • /
    • 1997
  • This study was concuted to determine the optimal conditions for raising the freshwater rotifer, Brachinus calyciflorus. The authors presented some biological informatin obtained from incubation experiment under the various controlled temperatures. Lorica size of the rotifer was divided into two groups : the length and the width for the S-type was $141.0\pm16.7\mu m$($110.1-182.5\;\mu m, n=44$)and $107.0\pm20.3\mu m\;(75.3-152.3\mu m, n=44)$, and those for the L-type was $262.8\pm15.2\mu m\;(234.4-288.6\mu m,\;n=20)\;and\;182.6\pm13.4\mu m (159.8-207.0\mu m,\;n=20$), respectively. The number of eggs being attached on the female varied from 1 to 11 at various culture conditions. Egg type was divided into two groups, large and small. Large and small egg was measured in its major axis as 85a.7-107.8$\mu$m and 55.1-65.2$\mu$m for S-type, and 104.9-121.8 $\mu$m and 62.8-89.1$\mu$m for L-type respectively. The maximum density was reached at 4th day after incubation. The density was 583.9 rotifers/$m\ell$ for $25^{\circ}C$-experimental. group and 421.3 rotifers/$m\ell$ for $22^{\circ}C$-experimental. group respectively. In the case of $28^{\circ}C$-experimental. group, it suddenly decreased into 4.7 rotifers/$m\ell$ at 1st day after incubations and did not recover to its initial density. The maximum rate of increase of populatin per day was reached 0.802 for $22^{\circ}C$-experimental. group at day 2 and fluctuated thereafter. For $25^{\circ}C$-experimental. group it increased to 0.964 at day 3 of incubation and then declined. And the egg ratio of female was reached the maximum of 0.614 for 22$^{\circ}C$- at 3rd day and 0.772 for $25^{\circ}C$-experimental. group at 4th day of incubation.

  • PDF

Growth and Characterization of AgGa$Se_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 AgGa$Se_2$ 단결정 박막 성장과 특성)

  • Hong, Gwang-Jun;Lee, Gwan-Gyo;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.419-426
    • /
    • 2001
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at$ 630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is 2.1$\mu\textrm{m}$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of AgGaSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89\Times10^{17}$ cm$^{-3}$ , 129cm2/V.s at 293K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the AgGaSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting $$\Delta$S_{o}$ and the crystal field splitting $\Delta$C$_{r}$, were 0.1762eV and 0.2474eV at 10K, respectively. From the photoluminescence measurement of AgGaSe$_2$ single crystal thin film, we observed free excision (EX) observable only in high quality crystal and neutral bound exciton ($D^{o}$ , X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8mev and 14.1meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.ion energy of impurity was 141 meV.

  • PDF