• 제목/요약/키워드: C-axis Milling

검색결과 24건 처리시간 0.023초

C-space 및 유효반경-맵을 이용한 5축 페이스 밀링의 공구자세 최적화에 관한 연구 (CL-data Optimization of 5-axis Face-milling Via C-space and Effective-radius Map)

  • 박정환;이정근
    • 한국CDE학회논문집
    • /
    • 제7권1호
    • /
    • pp.34-41
    • /
    • 2002
  • Five-axis NC machining, in general, is utilized in fabricating impellers, turbine blades, marine propellers that can be machined more effectively rather than three-axis machining. There have been many researches concerning tool interference avoidance, optimization of tool orientation. The C-space or Configuration-space was originated from the robotics area, which depicts interference-free joint-values in motion planning. In the paper we propose an optimizing scheme by which the maximum effective-radius of a face-milling cutter can be achieved for each CC(cutter-contact) point. Also the concept of a C-space for a CC point, the effective-radius map for 5-axis face-milling, and some illustrative examples of marine propeller machining, are presented.

CNC선반 C축 밀링 원호가공에서 절삭조건이 표면 거칠기에 미치는 영향 (Effect of Surface Roughness on Cutting Conditions in CNC lathe C-Axis Milling Arc Cutting)

  • 신국식
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.99-105
    • /
    • 2014
  • The domestic airline industry undertakes the production of finished products by assembling existing self-described components via a design process which involves assembly and production steps, after which many of the finished products are exported. However, high reliability and stability must be guaranteed, because customers require high-precision components at the time of manufacturing. In the aircraft parts industry, the mass production of high-value-added parts is limited. Therefore, a small production scale depending on the part is used, as many types of conventional CNC lathe machines with X-axis and Z-axis as well as Z-axis and C-axis CNC milling are used. The parts also rely on high-pressure air to increase production. The most important factors are good stability during processing, as high-precision parts are required, as noted above. It was found that as the C-axis rotation speed increased, the diameter of the cutting tool decreased with a decrease in the surface roughness, while the workpiece rotation speed increased with an increase in the surface roughness.

터빈블레이드의 5축 고속가공에서 최적가공경로의 선정 (Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade)

  • 임태순;이채문;김석원;이득우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.53-60
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries brought new technological challenges, related to the growing complexity of products and new geometry models. High speed machining using 5-Axis milling machine is widely used for 3D sculptured surface parts. 5-axis milling of turbine blade generates the vibration, deflection and twisting caused from thin and cantilever shape. So, the surface roughness and the waviness of workpiece are not good. In this paper, The effects of cutter orientation and lead/tilt angle in 5-Axis high speed ball end-milling of turbine blade were investigated to improve the geometric accuracy and surface integrity. The experiments were performed at lead/tilt angle $15^{\circ}$ of workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vertical inward. Workpiece deflection, surface roughness and machined surface were measured with various cutter orientations such as cutting direction, and lead/tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle.

  • PDF

3축 CNC 밀링을 이용한 치아 모형 제작 방법 (Making Teeth Models using 3-aixs CNC Milling)

  • 최원창;서엄지;백지혜;정연찬
    • 소성∙가공
    • /
    • 제23권1호
    • /
    • pp.16-22
    • /
    • 2014
  • The current study presents a simple setup method for making teeth models using a three-axis CNC milling machine. Physical teeth models can be made by several methods: casting, machining, and three-dimensional printing. Since the shape of a teeth model requires five-axis machining, the machining of a teeth model using a three-axis CNC milling machine requires careful setup operations. In this paper a simple datum shape is designed within the work piece of the teeth model. The datum shape is an n-sided prism with regular n-polygon ends and rectangular sides. In the present study a 12-sided prism is used, which easily makes 30 degree rotations for finish machining. The proposed setup approach does not require any special tools for making the teeth model using a three-axis CNC milling machine. A test was run and the results show that the proposed approach is useful for experimental makings with the limited facilities available.

CNC선반 C축 밀링가공에서 표면 거칠기에 미치는 절삭조건의 영향 (Effect of Cutting Conditions on Surface Roughness in CNC Lathe C-axis Milling Cutting)

  • 신국식
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.110-115
    • /
    • 2012
  • For domestic aircraft industry, not mass production of components is limited, small production scale of the order is made by part because many kinds of hundreds of thousands of kinds of small quantity batch production system are taking. But the high reliability and stability are required during the processing because they require high precision parts are required. It is found that when C-axis rotation speed was increased, the diameter of the cutting tool decreased with increasing surface roughness, while the turn-mail feed rate was increased with increasing the surface roughness.

회전형상의 자유곡면가공을 위한 4축 CAM 모쥴의 개발 (Four-axis CAM module for NC machining of rotational-free-surface)

  • 서석환;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.175-180
    • /
    • 1990
  • Rotational-free-surface (RFS) is a special type of free surface whose two boundaries coincide. For NC machining of PFS, a rotational axis as well as three Cartesian axes are required. In this paper, we develop a four-axis CAM module consisting of: a) Geometric modeling of RFS, b) CL-data generation, and c) Graphic simulation of machining operation. To test the validity and effectiveness of the developed module, several test cuts are made with Bridgeport CNC milling machine and compared with the graphic simulation.

  • PDF

탄소섬유복합재 3축 밀링 알고리즘 개발 (3-Axis Milling Algorithm Development for Carbon Fiber Reinforced Polymer (CFRP) Composites)

  • 루오산;바예스테레자;동주민;전병국
    • 한국정밀공학회지
    • /
    • 제33권6호
    • /
    • pp.447-452
    • /
    • 2016
  • The simulation of Carbon fiber reinforced polymer (CFRP) machining facilitates the selection of optimal cutting parameter for high machining efficiency and better surface quality. In this study, This paper proposes a dual-dexel model to represent the fiber laminate with computational geometry method to calculate the fiber length removed per revolution and fiber cutting angles. A flat end milling simulation software is developed in C# to simulate and display the CFRP milling process. During simulation, fiber lengths, fiber cutting angle and engaged cutting angle can be displayed in real-time. A CFRP plate with different angles in different layer is used to compare the simulation results.

3축 밀링 가공의 공구 충돌 검증 (Verification of Tool Collision for 3-Axis Milling)

  • 정연찬;박정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.116-121
    • /
    • 2001
  • Verification of tool collision is an important issue in die and mold machining. In this paper three functions of verification are schematically explained based on Z-Map model. The first function is getting a collision-free region when a tool assembly and a part surface model are given. The second function estimates the shortest length of cutter shank with that the tool cuts all of a region without collision. The last one is cutting simulation considering all parts of tool assembly as well as cutter blade. Those functions can be easily implemented by using several basic operators of Z-Map model which are explained also. Proposed approaches have enough accuracy to verify collision in reasonable computing time.

  • PDF

선박용 소형 프로펠러의 곡면 모델링 및 단일 셋업에 의한 4축 NC가공 데이터 생성에 관한 연구 (A Study on Geometric Modeling and Generation of 4-axis NC Data for Single Setup of Small Marine Propeller)

  • 이재현;이철수
    • 한국CDE학회논문집
    • /
    • 제7권4호
    • /
    • pp.254-261
    • /
    • 2002
  • Small marine propeller is generally machined by 5-axis machining. This paper suggests a method to create geometric model from point array data and 4-axis machining NC data for propeller. With conventional method, the setting posture should be changed, because propeller has front and back surface of wing. The change of setting posture has a bad influence on precision of propeller. So this paper pro-poses a method to machine propeller by single setup for 4-axis machining. The cutter moves to parallel direction of the XY plane. To determine the cutter orientation efficiently, the' tilting guiding line' is proposed. A proposed algorithm is written in C language and successfully applied to the 5-axis milling machine of industrial field.

어트리션 볼밀링 조건 변화에 따른 마그네슘 분말의 미세화 거동 (Refinement Behavior of Magnesium Powder by Attrition Milling Under Different Condition)

  • 유효상;김용호;김정한;김태경;손현택;이성희
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.591-598
    • /
    • 2014
  • In this research, magnesium powder was prepared by gas atomizing. Refinement behaviors of magnesium powder produced under different conditions were investigated using a mechanical milling (attrition milling) process. Analyses were performed to assess the characterization and comparison of milled powder with different steel ball sizes and milling times. The powders were analyzed by field emission scanning electron microscope, apparent density and powder fluidity. The particle morphology of the Mg powders changed from spherical particles of feed metals to irregular oval particles, then plate type particles, with an increasing milling time. Because of the HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, which results in producing plate-type powders. An increase in ball size and the impact energy of the magnesium powder maximizes the effect of refinement. Furthermore, it is possible to improve the apparent density and fluidity according to the smoothness of the surface of the initial powder.