• Title/Summary/Keyword: C-SiC-$B_4C$ composites

Search Result 97, Processing Time 0.041 seconds

A Study on Improvement of Fracture Toughness of $\beta-SiC-ZrB_2$Composites ($\beta-SiC-ZrB_2$ 복합체의 파괴인성 증진연구)

  • Shin Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Hwang, Chul;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.291-294
    • /
    • 1999
  • The effect of AI$_2$O$_3$+Y$_2$O$_3$additives on fracture toughness of $\beta$-SiC-ZrB$_2$composites by hot-pressed sintering were Investigated. The $\beta$-SiC-ZrB$_2$ ceramic composites were hot-presse sintered and annealed by adding 1, 2, 3wt% AI$_2$O$_3$+Y$_2$O$_3$(6:4wt%) powder as a liquid forming additives at 195$0^{\circ}C$ for 4h. In this microstructures, no reactions were observed between $\beta$-SiC and ZrB$_2$, and the relative density Is over 90.79% of the theoretical density and the porosity decreased with increasing AI$_2$O$_3$+Y$_2$O$_3$ contents. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed the highest of 5.5328MPa . m$^{1}$2/ for composites added with 2wt% AI$_2$O$_3$+Y$_2$O$_3$ additives at room temperature. But the standard deviation of fracture toughness of specimens decreased with increasing AI$_2$O$_3$+Y$_2$O$_3$ contents and showed the highest of 0.8624 for composite tilth 1wt%, AI$_2$O$_3$+Y$_2$O$_3$additives.

  • PDF

Sintering Characterization of Hot-Pressed SiC Prepared by SHS Microwave Method (SHS Microwave 법으로 합성한 SiC 분말의 고온가압 소결특성)

  • 김도경;안주삼;김익진;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.865-872
    • /
    • 1995
  • Ultra-fine $\beta$-SiC powders were fabricated by self-propagating high temperature synthesis process (SHS) using microwave oven. The flexural strength, fracture toughness, and hardness of hot pressed sample at 200$0^{\circ}C$ for 60 min using synthesized SiC powders, which had 2 wt% of Al2O3 and 2.5 wt% of B4C content, showed 438 MPa, 4.15MPa.m1/2 and 28 GPa, respectively. The highest strength, fracture toughness, and hardness of composites containing 4wt% of Al2O3, which had highest relative density of 99.9%, showed 458 MPa, 4.6MPa.m1/2 and 36.2 GPa, respectively.

  • PDF

Properties of ${\beta}$-SIC TiB$_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering(Ⅱ) (液狀 燒結에 의한 ${\beta}$-SIC TiB$_2$系 導電性 複合體의 特性(Ⅱ))

  • Shin, Yong-Deok;Yim Seung-Hyuk;Song Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.263-270
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and annealed ${\beta}-SiC-TiB_2$,/TEX> electroconductive ceramic composites were investigated as function as functions of the liquid forming additives of $Al_2O_3+Y_2O_3$. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$,/TEX>, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_3$ contents in pressureless annealing method because YAG of reaction between $Al_2O_3$ was increased. The flexural strength showed the highest value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives in pressed annealing method at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed 7.1 MPa ${\cdot}\;m^{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest value of $6.0{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm(25\'^{\circ}C}$ and $3.0{\times}10^{-3}/^{\circ}C$ for composite added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature, respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature ranges from 25 $^{\circ}C$ to 700 $^{\circ}C$.

  • PDF

In-situ Synthesis and Investment Casting of Titanium Matrix (TiC+TiB) Hybrid Composites (Ti기 (TiC+TiB) 하이브리드 복합재료 반응생성합성 및 정밀주조)

  • Sung, Si-Young;Park, Keun-Chang;Lee, Sang-Hwa;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.24 no.3
    • /
    • pp.159-164
    • /
    • 2004
  • The aim of the present work is to investigate the possibility of in-situ synthesis and net-shape forming of the titanium matrix (TiC+TiB) hybrid composites using a casting route. From the scanning electron microscopy, electron probe micro-analyzer, X-ray diffraction and thermodynamic calculations, the spherical TiC and needle like TiB reinforced hybrid titanium matrix composites could be obtained in-situ by the conventional melting and casting route between titanium and $B_4C$. No melt-mold reaction occurred between the titanium matrix (TiC+TiB) hybrid composites and the SKK mold, since the mold is consisted with interstitial and substitutional metal-mold reaction products. Not only the sound in-situ synthesis but also the economic net-shape forming of the titanium matrix (TiC+TiB) hybrid composites could be possible by the conventional casting route.

Properties of Electro-Conductive SiC-TiB2 Composites (도전성 ${\beta}-SiC-TiB_2$ 복합체의 특성)

  • Shin, Yong-Deok;Park, Mi-Lim;Song, Joon-Tae;Yim, Seung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.72-75
    • /
    • 2000
  • The effect of $Al_2O_3+Y_2O_3$ additives on fracture toughness of ${\beta}-SiC-TiB_2$ composites by hot-pressed sintering were investigated, The ${\beta}-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 4, 8, 12wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 97% of the theoretical density and the porosity increased with increasing $Al_2O_3+Y_2O_3$ contents because of the increasing tendency of pore formation. But the fracture toughness showed the highest of $7.0MPa{\cdot}m^{1/2}$ for composites added with 12wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity showed the lowest of $1.59\times10^{-3}\Omega{\cdot}cm$ for composite added with 8wt% $Al_2O_3+Y_2O_3$ additives at room temperature and is all positive temperature coefficient resistance(PTCR} against temperature up to $700^{\circ}C$.

  • PDF

Manufacture of $\beta-SiC-TiB_2$ Composites Densified by Liquid-Phase Sintering (액상소결에 의한 $\beta-SiC-TiB_2$ 복합체의 제조와 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Park, Mi-Lim;So, Byung-Moon;Lim, Seung-Hyuk;Song, Joon-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.479-481
    • /
    • 2000
  • The effect of $Al_{2}O_{3}+Y_{2}O_{3}$ additives on fracture toughness of $\beta-SiC-TiB_2$ composites by hot-pressed sintering were investigated. The f$\beta-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 16, 20, 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 95.88% of the theoretical density and the porosity increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest of $5.88MPa{\cdot}m^{1/2}$ for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity showed the lowest of $5.22{\times}10^{-4}\Omega{\cdot}cm$ for composite added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature and is all positive temperature coefficient resistance (PTCR) against temperature up to $700^{\circ}C$.

  • PDF

Effects of Mold on Properties of SiC-$ZrB_2$ Composites through SPS (SPS법에 의한 SiC-$ZrB_2$ 복합체의 특성에 미치는 몰드의 영향)

  • Shin, Yong-Deok;Lee, Jung-Hoon;Park, Jin-Hyoung;Ju, Jin-Young;Lee, Hee-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1515-1516
    • /
    • 2011
  • Conductive SiC-$ZrB_2$ composites were produced by subjection a 40:60(vol%) mixture of zirconium diborided ($ZrB_2$) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering (SPS) under argon atmosphere. Inner diameters of graphite mold were $15mm{\varphi}$ and $20mm{\varphi}$, respectively. The relative densities of $15mm{\varphi}$ and $20mm{\varphi}$ sample were 99.4% and 97.88%, respectively. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed via x-ray diffraction (hereafter, XRD) analysis. The result of FE-SEM of fracture face of $15mm{\varphi}$ sample was intergranular fracture and that of $20mm{\varphi}$ sample was transgranular fracture. Because the fracture strength of $15mm{\varphi}$ sample was much higher than that of $20mm{\varphi}$ sample. The electrical resistivity, $9.37{\times}10^{-4}{\Omega}{\cdot}cm$ of $15mm{\varphi}$ sample was higher than that, $6.17{\times}10^{-4}{\Omega}{\cdot}cm$ of $20mm{\varphi}$ sample because of densification. Although sintering condition of SPS is same. the properties of sintered SiC-$ZrB_2$ compacts were changed according to inner diameter of graphite mold.

  • PDF

Microstructure and Mechanical Properties of the $Al_2O_3-SiC$ Ceramics Produced by Melt Oxidation (용융산화법으로 제조한 $Al_2O_3-SiC$ 세라믹스의 미세구조와 기계적 성질)

  • ;H. W. Hennicke
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1169-1175
    • /
    • 1994
  • Five Al2O3/SiC/metal composites with four different particle sizes of green SiC abrasive grains are grown by the directed oxidation of an commercially available Al-alloy. Oxidation was conducted in air at 100$0^{\circ}C$, 96 hours long. Slip casted SiC-fillers were placed on the alloy or SiC powder deposited up to the required layer thickness. Their microstructures are described and measurements of density, elastic constants, frexural strength, fracture toughness and work of fracture are reported. The results are compared with those of commercial dense sintered Al2O3. The properties of produced materials have a strong relationship to not only the properties of Al2O3, SiC, Al and Si but also to the phase share and phase distribution. The composite materials are dense (0.5% porosity), tough (KIC = 3.4~6.4 MPa{{{{ SQRT { m} }}), strong ({{{{ sigma }}B = 170~345 MPa) and reasonably shrinkage free producible. The reinforcements is attained mainly through the plastic deformation of ductile metal phase.

  • PDF

Development of Ultra-High Temperature Ceramics (초고온 세라믹스의 발전 동향)

  • Lee, Sea Hoon;Park, Min-Sung;Zou, Yun
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.261-268
    • /
    • 2022
  • Ultra-high temperature ceramics (UHTC) such as ZrB2, ZrC, HfB2, HfC and TaC have been recently investigated for the application to hyper-sonic systems such as nose-cone, rocket nozzle and leading edge. In this paper, the recent research results about UHTC have been reviewed. Domestic and international research results about UHTC mainly during the last 5 years were briefly summarized. Also, the results of C3HARME project, which was one of the Horizon 2020 program in EU, to get over the problems of UHTC such as brittleness through the fabrication of ultra-high temperature ceramic matrix composites (UHTCMC) were briefly introduced.

Low-temperature sintering and microwave dielectric properties of $ZnAl_2O_4$ with ZnO-$B_2O_3-SiO_2$ glass (ZnO-$B_2O_3-SiO_2$ 유리가 첨가된 $ZnAl_2O_4$의 저온 소결 및 마이크로파 유전 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Kim, Shin;Kim, Yun-Han;Lee, Joo-Sik;Kim, Kyung-Mi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.265-265
    • /
    • 2007
  • In the present work, we have studied low temperature sintering and microwave dielectric properties of $ZnAl_2O_4$-zinc borosilicate (ZBS, 65ZnO-$25B_2O_3-10SiO_2$) glass composites. The focus of this paper was on the improvement of sinterability, low dielectric constant, and on the theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-ZBS glass composites, respectively. The $ZnAl_2O_4$ with 60 vo1% ZBS glass ensured successful sintering below $900^{\circ}C$. It is considered that the non-reactive liquid phase sintering (NPLS) occurred. In addition, $ZnAl_2O_4$ was observed in the $ZnAl_2O_4$-(x)ZBS composites, indicating that there were no reactions between $ZnAl_2O_4$ and ZBS glass. $ZnB_2O_4\;and\;Zn_2SiO_4$ with the willemite structure as the secondary phase was observed in the all $ZnAl_2O_4$-(x)ZBScomposites. In terms of dielectric properties, the application of the $ZnAl_2O_4$-(x)ZBS composites sintered at $900^{\circ}C$ to LTCC substrate were shown to be appropriate; $ZnAl_2O_4$-60ZBS (${\varepsilon}_r$= 6.7, $Q{\times}f$ value= 13,000 GHz, ${\tau}_f$= -30 ppm/$^{\circ}C$). Also, in this work was possible theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-(x)ZBS composites.

  • PDF