• 제목/요약/키워드: C-SiC-$B_4C$ composites

검색결과 97건 처리시간 0.039초

무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향 (Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites)

  • 신용덕;권주성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Kim, In-Yong;Kang, Myeong-Kyun;Jeon, Jun-Soo;Lee, Seung-Hoon;Jeon, An-Gyun;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1474-1480
    • /
    • 2013
  • Silicon carbide (SiC)-zirconium diboride ($ZrB_2$) composites were prepared by subjecting a 60:40 vol% mixture of ${\beta}$-SiC powder and $ZrB_2$ matrix to spark plasma sintering (SPS) in 15 $mm{\Phi}$ and 20 $mm{\Phi}$ molds. The 15 $mm{\Phi}$ and 20 $mm{\Phi}$ compacts were sintered for 60 sec at $1500^{\circ}C$ under a uniaxial pressure of 50 MPa and argon atmosphere. Similar composites were simulated using $Flux^{(R)}$ 3D computer simulation software. The current and power densities of the specimen sections of the simulated SiC-$ZrB_2$ composites were higher than those of the mold sections of the 15 $mm{\Phi}$ and 20 $mm{\Phi}$ mold simulated specimens. Toward the centers of the specimen sections, the current densities in the simulated SiC-$ZrB_2$ composites increased. The power density patterns of the specimen sections of the simulated SiC-$ZrB_2$ composites were nearly identical to their current density patterns. The current densities of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composites were higher than those of the 20 $mm{\Phi}$ mold in the center of the specimen section. The volume electrical resistivity of the simulated SiC-$ZrB_2$ composite was about 7.72 times lower than those of the graphite mold and the punch section. The power density, 1.4604 $GW/m^3$, of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composite was higher than that of the 20 $mm{\Phi}$ mold, 1.3832 $GW/m^3$. The $ZrB_2$ distributions in the 20 $mm{\Phi}$ mold in the sintered SiC-$ZrB_2$ composites were more uniform than those of the 15 $mm{\Phi}$ mold on the basis of energy-dispersive spectroscopy (EDS) mapping. The volume electrical resistivity of the 20 $mm{\Phi}$ mold of the sintered SiC-$ZrB_2$ composite, $6.17{\times}10^{-4}{\Omega}cm$, was lower than that of the 15 $mm{\Phi}$ mold, $9.37{\times}10^{-4}{\Omega}{\cdot}cm$, at room temperature.

SiC-ZrB2복합체의 특성에 미치는 SPS의 압력영향 (Effects of Pressure on Properties of SiC-ZrB2 Composites through SPS)

  • 이정훈;진범수;신용덕
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2083-2087
    • /
    • 2011
  • The SiC-$ZrB_2$ composites were produced by subjecting a 40:60 vol.% mixture of zirconium diboride($ZrB_2$) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering(SPS). Sintering was carried out for 60sec at $1400^{\circ}C$ (designation as TP145 and TP146), $1500^{\circ}C$(designation as TP155 and TP156) and uniaxial pressure 50MPa, 60MP under argon atmosphere. The physical, electrical, and mechanical properties of the SiC-$ZrB_2$ composites were examined. The relative density of TP145, TP146, TP155 and TP156 were 94.75%, 94.13%, 97.88% and 95.80%, respectively. Reactions between ${\beeta}$-SiC and $ZrB_2$ were not observed via x-ray diffraction (hereafter, XRD) analysis. The flexural strength, 306.23MPa of TP156 was higher than that, 279.42MPa of TP146 at room temperature, but lower than that, 392.30MPa of TP155. The properties of a SiC-$ZrB_2$ composites through SPS under argon atmosphere were positive temperature coefficient resistance (hereafter, PTCR) in the range from $25^{\circ}C$ to $500^{\circ}C$. The electrical resistivities of TP145, TP146, TP155 and TP156 were $6.75{\times}10^{-4}$, $7.22{\times}10^{-4}$, $6.17{\times}10^{-4}$ and $6.71{\times}10^{-4}{\Omega}{\cdot}cm$ at $25^{\circ}C$, respectively. The densification of a SiC-$ZrB_2$ composite through hot pressing depend on the sintering temperature and pressure. However, it is convinced that the densification of a SiC-$ZrB_2$ composite do not depend on sintering pressure under SPS.

SiC 전도성 세라믹 복합체의 특성에 미치는 TiB$_2$의 영향 (Effect of TiB$_2$on Properties of SiC Electroconductive Ceramic Composites)

  • 신용덕;박미림;소병문;이동문
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권4호
    • /
    • pp.141-146
    • /
    • 2002
  • The mechanical and electrical properties of the pressureless sintered SiC-TiB$_2$electroconductive ceramic composites were investigated as functions of the transition metal of TiB$_2$. The result of phase analysis for the SiC-TiB$_2$ composites by XRD revealed $\alpha$-SiC(6H), TiB$_2$, and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phases. The relative density showed the lowest 84.8% for the SiC-TiB$_2$composites added with 39vol.%TiB$_2$. Owing to crack deflection, crack bridging and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 7.8 MPa.m$^{1}$2/ for composites added with 39vol.%TiB$_2$under a pressureless annealing at room temperature. The electrical resistivity of the SiC-27vol.%TiB$_2$ composites was negative temperature coefficient resistance(NTCR), and the electrical resistivity of the besides SiC-27vol.%TiB$_2$composites was all positive temperature coefficient resistance(PCTR) in the temperature range of $25^{\circ}C$ to $700^{\circ}C$.EX>.

SPS법에 의한 SiC-$ZrB_2$ 복합체의 특성에 미치는 압력의 영향 (Effects of Pressure on Properties of SiC-$ZrB_2$ Composites through SPS)

  • 신용덕;이정훈;김철호;진범수;우나
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1449-1450
    • /
    • 2011
  • The SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol.%) mixture of zirconium diboride($ZrB_2$) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering(SPS) under argon atmosphere at 50MPa(P50) and 60MPa(P60) pressure. The relative density, 94.13% of P60 sample was lower than that, 94.75% of P50 sample. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed via x-ray diffraction (hereafter, XRD) analysis. The trend of flexural strength of SiC-$ZrB_2$ composites were in accordance with the relative density. The properties of a SiC-$ZrB_2$ composites through SPS under argon atmosphere were positive temperature coefficient resistance in the temperature range from $25^{\circ}C$ to $500^{\circ}C$, and electrical resistivity of P50 and P60 sample were $6.75{\times}10^{-4}$ and $7.22{\times}10^{-4}{\Omega}{\cdot}cm$ at room temperature, respectively.

  • PDF

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Annealing 온도(溫度)의 영향(影響) (Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권9호
    • /
    • pp.434-441
    • /
    • 2006
  • The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3\;and\;Y_2O_3$) as a sintering aid. The relative density and mechanical properties are increased markedly at temperatures in the range of $1,850{\sim}1,900[{^\circ}C]$. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 81.1[%], 230[MPa], 9.88[GPa] and $6.05[MPa\;m^{1/2}]$ for $SiC-ZrB_2$ composites of $1,900[{^\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[{^\circ}C]\;to\;700[{^\circ}C]$, The electrical resistivity showed the value of $1.36{\times}10^{-4},\;3.83{\times}10^{-4},\;3.51{\times}10^{-4}\;and\; 3.2{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $4.194{\times}10^{-3},\;3,740{\times}10^{-3},\;2,993{\times}10^{-3},\;3,472{\times}10^{-3}/[^{\circ}C}$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively in the temperature ranges from $25[{\circ}C]\;to\;700[{\circ}C]$, It is assumed that because polycrystallines such as recrystallized $SiC-ZrB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-ZrB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

상압소결(常壓燒結)한 $SiC-TiB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Annealing 온도(溫度)의 영향(影響) (Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-TiB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권10호
    • /
    • pp.467-474
    • /
    • 2006
  • The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-TiB_2$ electroconductive ceramic composites was investigated. The $SiC-TiB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] $Al_2O_3+Y_2O_3(6:4\;mixture\;of\;Al_2O_3\;and\;Y_2O_3)$ as a sintering aid. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 84.92[%], 140[MPa], 4.07[GPa] and $3.13[MPa{\cdot}m^{1/2}]$ for $SiC-TiB_2$ composites of $1,900[^{\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The electrical resistivity showed the value of $5.51{\times}10^{-4},\;2.11{\times}10^{-3},\;7.91{\times}10^{-4}\;and\;6.91{\times}10^{-4}[\Omega{\cdot}cm]$ for ST1750, ST1800, ST1850 and ST1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $3.116{\times}10^{-3},\;2.717{\times}10^{-3},\;2.939{\times}10^{-3},\;3.342{\times}10^{-3}/[^{\circ}C]$ for ST1750, ST1800, ST1850 and ST1900 respectively in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. It is assumed that because polycrystallines, such as recrystallized $SiC-TiB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-TiB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive)

  • 신용덕;주진영;고태헌;이정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

상압소결을 위한 $SiC-TiB_2$ 전도성 세라믹 복합체의 제조와 특성 (Manufacture and Properties of $SiC-TiB_2$Electroconductive Ceramic Composites for Pressureless Sintering)

  • 주진영;신용덕
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권10호
    • /
    • pp.500-503
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and pressureless annealed SiC+39vol.%$TiB_2$electroconductive ceramic composites were investigated as a function of the liquid additives of $Al_2O_3+Y_2O_3$. The result of phase analysis for the SiC+39vol.%$TiB_2$composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and $YAG(Al_5Y_3O_{12})4 crystal phase. The relative density of SiC+39vol.%$TiB_2$ composites was increased with increased $Al_2O_3+Y_2O_3$. contents. The fracture toughness showed the highest value of $7.8 MPa.m^{1/2}$ for composites added with 12 wt % $Al_2O_3+Y_2O_3$. additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest value of $7.3\times10_{-4}\Omega.cm\; and\; 3.8\times10_{-3}/^{\circ}C$ for composite added with 12 wt% $Al_2O_3+Y_2O_3$. additives at room temperature. The electrical resistivity of the SiC+39vol.%$TiB_2$composites was all positive temperature coefficient resistance(PTCR) in the temperature ranges from $25^{\circ}C\; to\; 700^{\circ}C$.

  • PDF

무가압 어닐드한 Sic-$TiB_2$ 전도성 복합체의 특성에 미치는 In Situ YAG의 영향 (Effects of In Situ YAG on Properties of the Pressurless Annealed Sic-$TiB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영;고태헌
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.808-815
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at 1650[$^{\circ}C$] for 4 hours. The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), ${\beta}$-SiC(3C), $TiB_2$, and In Situ YAG($Al_2Y_3O_{12}$). The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. There is another reason which pressureless annealed temperature 1650[$^{\circ}C$] is lower $300{\sim}450[^{\circ}C]$ than applied pressure sintering temperature $1950{\sim}2100[^{\circ}C]$. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[Mpa], 54.60[Gpa] and 2.84[Gpa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of 0.0117[${\Omega}{\cdot}cm$] for 16[wt%] $Al_2O_3+Y_2O_3$ additives at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from $25^{\circ}C$ to 700[$^{\circ}C$]. The resistance temperature coefficient of composite showed the lowest value of $-2.3{\times}10^{-3}[^{\circ}C]^{-1}$ for 16[wt%] additives in the temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$].